All-optical band engineering of gapped Dirac materials
Hleð...
Dagsetning
Höfundar
Journal Title
Journal ISSN
Volume Title
Útgefandi
American Physical Society (APS)
Úrdráttur
We demonstrate theoretically that the interaction of electrons in gapped Dirac materials (gapped graphene and transition-metal dichalchogenide monolayers) with a strong off-resonant electromagnetic field (dressing field) substantially renormalizes the band gaps and the spin-orbit splitting. Moreover, the renormalized electronic parameters drastically depend on the field polarization. Namely, a linearly polarized dressing field always decreases the band gap (and, particularly, can turn the gap into zero), whereas a circularly polarized field breaks the equivalence of valleys in different points of the Brillouin zone and can both increase and decrease corresponding band gaps. As a consequence, the dressing field can serve as an effective tool to control spin and valley properties of the materials and be potentially exploited in optoelectronic applications.
Lýsing
Publisher's version (útgefin grein)
Efnisorð
Band gap, Electronic structure, Valleytronics, Graphene, Transition-metal dichalcogenide, Condensed Matter & Materials Physics, Þéttefnisfræði, Rafeindir, Rafsegulfræði
Citation
Kibis, O. V., Dini, K., Iorsh, I. V., & Shelykh, I. A. (2017). All-optical band engineering of gapped Dirac materials. Physical Review B, 95(12), 125401. doi:10.1103/PhysRevB.95.125401