Opin vísindi

Modeling and Assessment of Afterglow Decay Curves from Thermally Stimulated Luminescence of Complex Garnets

Modeling and Assessment of Afterglow Decay Curves from Thermally Stimulated Luminescence of Complex Garnets


Title: Modeling and Assessment of Afterglow Decay Curves from Thermally Stimulated Luminescence of Complex Garnets
Author: Khanin, Vasilii M.
Vrubel, Ivan I.
Polozkov, Roman G.
Shelykh, Ivan   orcid.org/0000-0001-5393-821X
Venevtsev, Ivan D.
Meijerink, Andries
Wieczorek, Herfried
Boerekamp, Jack
Spoor, Sandra
Rodnyi, Piotr A.
... 1 more authors Show all authors
Date: 2019-02-18
Language: English
Scope: 1894-1903
University/Institute: Háskóli Íslands
University of Iceland
School: Verkfræði- og náttúruvísindasvið (HÍ)
School of Engineering and Natural Sciences (UI)
Department: Raunvísindastofnun (HÍ)
Science Institute (UI)
Series: The Journal of Physical Chemistry A;123(9)
ISSN: 1089-5639
1520-5215 (eISSN)
DOI: 10.1021/acs.jpca.8b11778
Subject: Eðlisfræði; Líkön
URI: https://hdl.handle.net/20.500.11815/1357

Show full item record

Citation:

Khanin, V. M., Vrubel, I. I., Polozkov, R. G., Shelykh, I. A., Venevtsev, I. D., Meijerink, A., . . . Ronda, C. (2019). Modeling and Assessment of Afterglow Decay Curves from Thermally Stimulated Luminescence of Complex Garnets. The Journal of Physical Chemistry A, 123(9), 1894-1903. doi:10.1021/acs.jpca.8b11778

Abstract:

Afterglow is an important phenomenon in luminescent materials and can be desired (e.g., persistent phosphors) or undesired (e.g., scintillators). Understanding and predicting afterglow is often based on analysis of thermally stimulated luminescence (TSL) glow curves, assuming the presence of one or more discrete trap states. Here we present a new approach for the description of the time-dependent afterglow from TSL glow curves using a model with a distribution of trap depths. The method is based on the deconvolution of the energy dependent density of occupied traps derived from TSL glow curves using Tikhonov regularization. To test the validity of this new approach, the procedure is applied to experimental TSL and afterglow data for Lu1Gd2Ga3Al2O12:Ce ceramics codoped with 40 ppm of Yb3+ or Eu3+ traps. The experimentally measured afterglow curves are compared with simulations based on models with and without the continuous trap depth distribution. The analysis clearly demonstrates the presence of a distribution of trap depths and shows that the new approach gives a more accurate description of the experimentally observed afterglow. The new method will be especially useful in understanding and reducing undesired afterglow in scintillators.

Description:

Post-print (lokagerð höfundar)

Rights:

Open Access CC BY-NC-SA 4.0 https://creativecommons.org/licenses/by-nc-sa/4.0/ as mandated by H2020 Programme (https://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/amga/h2020-amga_en.pdf#page=245)

Files in this item

This item appears in the following Collection(s)