Opin vísindi

Enhanced skyrmion stability due to exchange frustration

Enhanced skyrmion stability due to exchange frustration

Title: Enhanced skyrmion stability due to exchange frustration
Author: von Malottki, S.
Dupé, B.
Bessarab, Pavel
Delin, A.
Heinze, S.
Date: 2017-09-26
Language: English
Scope: 12299
University/Institute: Háskóli Íslands
University of Iceland
School: Verkfræði- og náttúruvísindasvið (HÍ)
School of Engineering and Natural Sciences (UI)
Department: Raunvísindastofnun (HÍ)
Science Institute (UI)
Series: Scientific Reports;7(1)
ISSN: 2045-2322
DOI: 10.1038/s41598-017-12525-x
Subject: Magnetic properties and materials; Spintronics; Eðlisfræði; Segulmagn; Aflfræði; Hreyfifræði
URI: https://hdl.handle.net/20.500.11815/552

Show full item record


von Malottki, S., Dupé, B., Bessarab, P. F., Delin, A., & Heinze, S. (2017). Enhanced skyrmion stability due to exchange frustration. Scientific Reports, 7(1), 12299. doi:10.1038/s41598-017-12525-x


Skyrmions are localized, topologically non-trivial spin structures which have raised high hopes for future spintronic applications. A key issue is skyrmion stability with respect to annihilation into the ferromagnetic state. Energy barriers for this collapse have been calculated taking only nearest neighbor exchange interactions into account. Here, we demonstrate that exchange frustration can greatly enhance skyrmion stability. We focus on the prototypical film system Pd/Fe/Ir(111) and use an atomistic spin model parametrized from first-principles calculations. We show that energy barriers and critical fields of skyrmion collapse as well as skyrmion lifetimes are drastically enhanced due to frustrated exchange and that antiskyrmions are metastable. In contrast an effective nearest-neighbor exchange model can only account for equilibrium properties of skyrmions such as their magnetic field dependent profile or the zero temperature phase diagram. Our work shows that frustration of long range exchange interactions – a typical feature in itinerant electron magnets – is a route towards enhanced skyrmion stability even in systems with a ferromagnetic ground state.


This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Files in this item

This item appears in the following Collection(s)