Opin vísindi

Mechanism of Interlayer Transport on a Growing Au(111) Surface: 2D vs. 3D Growth

Skoða venjulega færslu

dc.contributor Háskóli Íslands
dc.contributor University of Iceland
dc.contributor.author Ali, Abid
dc.contributor.author Jónsson, Hannes
dc.date.accessioned 2022-07-11T11:53:58Z
dc.date.available 2022-07-11T11:53:58Z
dc.date.issued 2022-07
dc.identifier.citation Abid Ali, Hannes Jónsson, Mechanism of Interlayer Transport on a Growing Au(111) Surface: 2D vs. 3D Growth, Surfaces and Interfaces, Vol. 31, 2022, 101944, https://doi.org/10.1016/j.surfin.2022.101944.
dc.identifier.issn 2468-0230
dc.identifier.uri https://hdl.handle.net/20.500.11815/3292
dc.description.abstract The atomic scale transitions corresponding to diffusion and interlayer transport of a Au adatom on the low energy, close packed Au(111) surface are studied using density functional theory calculations within the generalized gradient approximation. Minimum energy paths and estimates of activation energy are calculated for processes that influence whether the crystal grows layer-by-layer, i.e. 2D growth, or whether new islands tend to nucleate on top of existing islands resulting in 3D growth. Kinks on island edges turn out to provide paths for adatom descent with lower activation energy than straight steps. The energy barrier for an adatom to round the corner and enter a kink site is significantly higher. A descent mechanism that places an adatom near but not at a kink site can therefore promote the formation of a new row of step atoms and lead to the introduction of additional kink sites, thereby opening up new low activation energy paths for descent and promotion of 2D growth. The sites adjacent and above the step edge provide large binding energy for the adatom, especially at the B-type step, and form a trough along which the adatom can migrate before descending, thereby increasing the probability that an adatom finds a kink on the B-type step. These features of the energy landscape representing the interaction of a Au adatom with the surface point to the possibility of a re-entrant layer-by-layer growth mode of the low energy, close packed surface of the gold crystal.
dc.description.sponsorship This work was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie Innovative Training Network ELENA and by the Icelandic Science Fund.
dc.format.extent 101944
dc.language.iso en
dc.publisher Elsevier
dc.relation info:eu-repo/grantAgreement/EC/H2020/722149
dc.relation.ispartofseries Surfaces and Interfaces;31
dc.rights info:eu-repo/semantics/openAccess
dc.subject surface growth
dc.title Mechanism of Interlayer Transport on a Growing Au(111) Surface: 2D vs. 3D Growth
dc.type info:eu-repo/semantics/article
dc.identifier.journal Surfaces and Interfaces
dc.identifier.doi 10.1016/j.surfin.2022.101944
dc.relation.url https://www.sciencedirect.com/science/article/pii/S246802302200219X
dc.contributor.department Raunvísindastofnun (HÍ)
dc.contributor.department Science Institute (UI)
dc.contributor.school Verkfræði- og náttúruvísindasvið (HÍ)
dc.contributor.school School of Engineering and Natural Sciences (UI)


Skrár

Þetta verk birtist í eftirfarandi safni/söfnum:

Skoða venjulega færslu