Opin vísindi

Experimental identification of two distinct skyrmion collapse mechanisms

Show simple item record

dc.contributor Háskóli Íslands
dc.contributor University of Iceland
dc.contributor.author Muckel, Florian
dc.contributor.author von Malottki, Stephan
dc.contributor.author Holl, Christian
dc.contributor.author Pestka, Benjamin
dc.contributor.author Pratzer, Marco
dc.contributor.author Bessarab, Pavel
dc.contributor.author Heinze, Stefan
dc.contributor.author Morgenstern, Markus
dc.date.accessioned 2022-02-25T10:11:26Z
dc.date.available 2022-02-25T10:11:26Z
dc.date.issued 2021-01-04
dc.identifier.citation F. Muckel, S. von Malottki, C. Holl, B. Pestka, M. Pratzer, P.F. Bessarab, S. Heinze, & M. Morgenstern. Experimental identification of two distinct skyrmion collapse mechanisms. Nature Physics 17, 395-402 (2021). doi: 10.1038/s41567-020-01101-2
dc.identifier.issn 1745-2473
dc.identifier.issn 1745-2481 (eISSN)
dc.identifier.uri https://hdl.handle.net/20.500.11815/2924
dc.description Post-print / Lokaútgáfa höfundar
dc.description.abstract Magnetic skyrmions are key candidates for applications in memory, logic and neuromorphic computing. An essential property is their topological protection that is caused by the swirling spin texture and described by a robust integer winding number. However, this protection is strictly enforced only in the continuum, and so the atomic lattice present in all real materials leaves a loophole for switching the winding number. Hence, understanding the microscopic mechanism of this unwinding is crucial for enhancing the stability of skyrmions. Here we use spin-polarized scanning tunnelling microscopy to locally probe skyrmion annihilation by individual hot electrons. We tune the collapse rate by up to four orders of magnitude by using an in-plane magnetic field, and observe distinct transition rate maps that either are radial symmetric or exhibit an excentric hotspot. We compare these maps to atomistic spin simulations based on parameters obtained from first-principles calculations and find that the maps are explained by a radial symmetric collapse at zero in-plane magnetic field and a transition to the recently predicted chimera collapse at finite in-plane magnetic fields. These insights into the transient state of the skyrmion collapse will enable future enhancement of skyrmion stability and designs for intentional skyrmion switches.
dc.description.sponsorship We gratefully acknowledge helpful discussions with S. Lounis, S. Bl¨ugel, G. Volovskiy, A. Schlenhoff, M. Liebmann, M. A. Goerzen, T. Sigurj´onsd´ottir and financial support by the German Science Foundation (DFG) via PR 1098/1-1, the Russian Science Foundation (Grant No.19-72-10138), the Icelandic Research Fund (Grant No.184949-052), and the Alexander von Humboldt Foundation
dc.format.extent 395-402
dc.language.iso en
dc.publisher Springer Nature
dc.relation.ispartofseries Nature Physics;17
dc.rights info:eu-repo/semantics/embargoedAccess
dc.subject General Physics and Astronomy
dc.subject Eðlisfræði
dc.subject.mesh Spintronics
dc.subject.mesh Topological defects
dc.subject.mesh Scanning probe microscopy
dc.subject.mesh magnetic properties and materials
dc.title Experimental identification of two distinct skyrmion collapse mechanisms
dc.type info:eu-repo/semantics/article
dcterms.license 6 months embargo /6 mánaða birtingartöf samkv. stefnu útgefanda
dc.description.version Peer Reviewed
dc.identifier.journal Nature Physics
dc.identifier.doi 10.1038/s41567-020-01101-2
dc.contributor.department Raunvísindastofnun (HÍ)
dc.contributor.department Science Institute (UI)
dc.contributor.school Verkfræði- og náttúruvísindasvið (HÍ)
dc.contributor.school School of Engineering and Natural Sciences (UI)

Files in this item

This item appears in the following Collection(s)

Show simple item record