Opin vísindi

Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics

Skoða venjulega færslu

dc.contributor Háskóli Íslands
dc.contributor University of Iceland
dc.contributor Háskólinn í Reykjavík
dc.contributor Reykjavik University
dc.contributor.author Bordbar, Aarash
dc.contributor.author Yurkovich, James T.
dc.contributor.author Paglia, Giuseppe
dc.contributor.author Rolfsson, Óttar
dc.contributor.author Sigurjónsson, Ólafur E.
dc.contributor.author Palsson, Bernhard O.
dc.date.accessioned 2017-05-15T15:40:23Z
dc.date.available 2017-05-15T15:40:23Z
dc.date.issued 2017-04-07
dc.identifier.citation Bordbar, A. et al. Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Sci. Rep. 7, 46249; doi: 10.1038/srep46249 (2017).
dc.identifier.issn 2045-2322
dc.identifier.uri https://hdl.handle.net/20.500.11815/268
dc.description.abstract The increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time-course absolute quantitative metabolomics. This approach, termed “unsteady-state flux balance analysis” (uFBA), is applied to four cellular systems: three dynamic and one steady-state as a negative control. uFBA and FBA predictions are contrasted, and uFBA is found to be more accurate in predicting dynamic metabolic flux states for red blood cells, platelets, and Saccharomyces cerevisiae. Notably, only uFBA predicts that stored red blood cells metabolize TCA intermediates to regenerate important cofactors, such as ATP, NADH, and NADPH. These pathway usage predictions were subsequently validated through 13C isotopic labeling and metabolic flux analysis in stored red blood cells. Utilizing time-course metabolomics data, uFBA provides an accurate method to predict metabolic physiology at the cellular scale for dynamic systems.
dc.description.sponsorship This work was supported by the National Heart Lung and Blood Institute (R43HL123074 and R43HL127843), the European Research Council (232816), and the U.S. Department of Energy (DE-SC0008701).
dc.format.extent 46249
dc.language.iso en
dc.publisher Springer Nature
dc.relation.ispartofseries Scientific Reports;7
dc.rights info:eu-repo/semantics/openAccess
dc.subject Biochemical networks
dc.subject Metabolomics
dc.subject Metabolic pathways
dc.subject Lífefnafræði
dc.subject Frumulíffræði
dc.subject Efnaskipti
dc.title Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics
dc.type info:eu-repo/semantics/article
dcterms.license Creative Commons Attribution 4.0 International License.
dc.description.version Peer Reviewed
dc.description.version Ritrýnt tímarit
dc.identifier.journal Scientific Reports
dc.identifier.doi 10.1038/srep46249
dc.relation.url https://www.nature.com/articles/srep46249
dc.contributor.department Læknadeild (HÍ)
dc.contributor.department Faculty of Medicine (UI)
dc.contributor.school Heilbrigðisvísindasvið (HÍ)
dc.contributor.school School of Health Sciences (UI)
dc.contributor.school Tækni- og verkfræðideild (HR)
dc.contributor.school School of Science and Engineering (RU)


Skrár

Þetta verk birtist í eftirfarandi safni/söfnum:

Skoða venjulega færslu