Opin vísindi

Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia

Skoða venjulega færslu

dc.contributor Háskóli Íslands
dc.contributor University of Iceland
dc.contributor.author Sønderby, Ida E
dc.contributor.author Ulfarsson, Magnus
dc.contributor.author Walters, G. Bragi
dc.contributor.author Stefansson, Kari
dc.date.accessioned 2021-02-01T13:21:15Z
dc.date.available 2021-02-01T13:21:15Z
dc.date.issued 2018-10-03
dc.identifier.citation Sønderby, I.E., Gústafsson, Ó., Doan, N.T. et al. Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia. Molecular Psychiatry 25, 584–602 (2020). https://doi.org/10.1038/s41380-018-0118-1
dc.identifier.issn 1359-4184
dc.identifier.issn 1476-5578 (eISSN)
dc.identifier.uri https://hdl.handle.net/20.500.11815/2436
dc.description Publisher's version (útgefin grein)
dc.description.abstract Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = −0.71 to −1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = −0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10−6, 1.7 × 10− 9, 3.5 × 10−12 and 1.0 × 10−4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.
dc.description.sponsorship 1000BRAINS: 1000BRAINS is a population-based cohort based on the Heinz-Nixdorf Recall Study and is supported in part by the German National Cohort. We thank the Heinz Nixdorf Foundation (Germany) for their generous support in terms of the Heinz Nixdorf Study. The HNR study is also supported by the German Ministry of Education and Science (FKZ 01EG940), and the German Research Council (DFG, ER 155/6-1). The authors are supported by the Initiative and Networking Fund of the Helmholtz Association (Svenja Caspers) and the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement 7202070 (Human Brain Project SGA1; Katrin Amunts, Sven Cichon). This work was further supported by the German Federal Ministry of Education and Research (BMBF) through the Integrated Network IntegraMent (Integrated Understanding of Causes and Mechanisms in Mental Disorders) under the auspices of the e:Med Program (grant 01ZX1314A to M.M.N. and S.C.), and by the Swiss National Science Foundation (SNSF, grant 156791 to S.C.). 16p.11.2 European Consortium: B.D. is supported by the Swiss National Science Foundation (NCCR Synapsy, project grant Nr 32003B_159780) and Foundation Synapsis. LREN is very grateful to the Roger De Spoelberch and Partridge Foundations for their generous financial support. This work was supported by grants from the Simons Foundation (SFARI274424) and the Swiss National Science Foundation (31003A_160203) to A.R. and S.J. Betula: The relevant Betula data collection and analyses were supported by a grant from the Knut & Alice Wallenberg (KAW) to L. Nyberg. Brainscale: the Brainscale study was supported by the Netherlands Organization for Scientific Research MagW 480-04-004 (Dorret Boomsma), 51.02.060 (Hilleke Hulshoff Pol), 668.772 (Dorret Boomsma & Hilleke Hulshoff Pol); NWO/SPI 56-464-14192 (Dorret Boomsma), the European Research Council (ERC-230374) (Dorret Boomsma), High Potential Grant Utrecht University (Hilleke Hulshoff Pol), NWO Brain and Cognition 433-09-220 (Hilleke Hulshoff Pol). Brain Imaging Genetics (BIG): This work makes use of the BIG database, first established in Nijmegen, The Netherlands, in 2007. This resource is now part of Cognomics (www.cognomics.nl), a joint initiative by researchers of the Donders Centre for Cognitive Neuroimaging, the Human Genetics and Cognitive Neuroscience departments of the Radboud university medical centre and the Max Planck Institute for Psycholinguistics in Nijmegen. The Cognomics Initiative has received supported from the participating departments and centres and from external grants, i.e., the Biobanking and Biomolecular Resources Research Infrastructure (the Netherlands) (BBMRI-NL), the Hersenstichting Nederland, and the Netherlands Organisation for Scientific Research (NWO). The research leading to these results also receives funding from the NWO Gravitation grant ‘Language in Interaction’, the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreements n° 602450 (IMAGEMEND), n°278948 (TACTICS), and n°602805 (Aggressotype) as well as from the European Community’s Horizon 2020 programme under grant agreement n° 643051 (MiND) and from ERC-2010-AdG 268800-NEUROSCHEMA. In addition, the work was supported by a grant for the ENIGMA Consortium (grant number U54 EB020403) from the BD2K Initiative of a cross-NIH partnership. COBRE: This work was supported by a NIH COBRE Phase I grant (1P20RR021938, Lauriello, PI and 2P20GM103472, Calhoun, PI) awarded to the Mind Research Network. We wish to express our gratitude to numerous investigators who were either external consultants to the Cores and projects, mentors on the projects, members of the external advisory committee and members of the internal advisory committee. Decode: The research leading to these results has received financial contribution from the European Union’s Seventh Framework Programme (EU-FP7/2007–2013), EU-FP7 funded grant no. 602450 (IMAGEMEND) as well as support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no.115300 (EUAIMS). DemGene: Norwegian Health Association and Research Council of Norway. Dublin: Work was supported by Science Foundation Ireland (SFI grant 12/IP/1359 to Gary Donohoe and SFI08/IN.1/B1916-Corvin to Aidan C Corvin) and the European Research Council (ERC-StG-2015-677467). EPIGEN-UK (SMS, CL): The work was partly undertaken at UCLH/UCL, which received a proportion of funding from the UK Department of Health’s NIHR Biomedical Research Centres funding scheme. We are grateful to the Wolfson Trust and the Epilepsy Society for supporting the Epilepsy Society MRI scanner, and the Epilepsy Society for supporting CL. Haavik: The work at the K.G.Jebsen center for neuropsychiatric disorders at the University of Bergen, Norway, was supported by Stiftelsen K.G. Jebsen, European Community’s Seventh Framework Program under grant agreement no 602805 and the H2020 Research and Innovation Program under grant agreement numbers 643051 and 667302. HUNT: The HUNT Study is a collaboration between HUNT Research Centre (Faculty of Medicine, Norwegian University of Science and Technology), Nord-Trøndelag County Council, Central Norway Health Authority, and the Norwegian Institute of Public Health. HUNT-MRI was funded by the Liaison Committee between the Central Norway Regional Health Authority and the Norwegian University of Science and Technology, and the Norwegian National Advisory Unit for functional MRI. IMAGEN: The work received support from the European Union-funded FP6Integrated Project IMAGEN (Reinforcement-related behaviour in normal brain function and psychopathology) (LSHM-CT- 2007-037286), the Horizon 2020 funded ERC Advanced Grant ‘STRATIFY’ (Brain network based stratification of reinforcement-related disorders) (695313), ERANID (Understanding the Interplay between Cultural, Biological and Subjective Factors in Drug Use Pathways) (PR-ST-0416-10004), BRIDGET (JPND: BRain Imaging, cognition Dementia and next generation GEnomics) (MR/N027558/1), the FP7 projects IMAGEMEND (602450; IMAging GEnetics for MENtal Disorders) and MATRICS (603016), the Innovative Medicine Initiative Project EU-AIMS (115300), the Medical Research Council Grant ‘c-VEDA’ (Consortium on Vulnerability to Externalizing Disorders and Addictions) (MR/N000390/1), the Swedish Research Council FORMAS, the Medical Research Council, the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, the Bundesministeriumfür Bildung und Forschung (BMBF grants 01GS08152; 01EV0711; eMED SysAlc01ZX1311A; Forschungsnetz AERIAL), the Deutsche Forschungsgemeinschaft (DFG grants SM 80/7-1, SM 80/7-2, SFB 940/1). Further support was provided by grants from: ANR (project AF12-NEUR0008-01—WM2NA, and ANR-12-SAMA-0004), the Fondation de France, the Fondation pour la Recherche Médicale, the Mission Interministérielle de Lutte-contre-les-Drogues-et-les-Conduites-Addictives (MILDECA), the Assistance-Publique-Hôpitaux-de-Paris and INSERM (interface grant), Paris Sud University IDEX 2012; the National Institutes of Health, Science Foundation Ireland (16/ERCD/3797), USA (Axon, Testosterone and Mental Health during Adolescence; RO1 MH085772-01A1), and by NIH Consortium grant U54 EB020403, supported by a cross-NIH alliance that funds Big Data to Knowledge Centres of Excellence. MCIC: This work was supported primarily by the Department of Energy DE-FG02-99ER62764 through its support of the Mind Research Network and the consortium as well as by the National Association for Research in Schizophrenia and Affective Disorders (NARSAD) Young Investigator Award (to SE) as well as through the Blowitz-Ridgeway and Essel Foundations, and through NWO ZonMw TOP 91211021, the DFG research fellowship (to SE), the Mind Research Network, National Institutes of Health through NCRR 5 month-RR001066 (MGH General Clinical Research Center), NIMH K08 MH068540, the Biomedical Informatics Research Network with NCRR Supplements to P41 RR14075 (MGH), M01 RR 01066 (MGH), NIBIB R01EB006841 (MRN), R01EB005846 (MRN), 2R01 EB000840 (MRN), 1RC1MH089257 (MRN), as well as grant U24 RR021992. NCNG: this sample collection was supported by grants from the Bergen Research Foundation and the University of Bergen, the Dr Einar Martens Fund, the K.G. Jebsen Foundation, the Research Council of Norway, to SLH, VMS and TE. The Bergen group was supported by grants from the Western Norway Regional Health Authority (Grant 911593 to AL, Grant 911397 and 911687 to AJL). NESDA: Funding for NESDA was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10-000-1002); the Center for Medical Systems Biology (CSMB, NWO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University’s Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, R01D0042157-01A, MH081802, Grand Opportunity grants 1RC2 MH089951 and 1RC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health.Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO. NTR: The NTR study was supported by the Netherlands Organization for Scientific Research (NWO), MW904-61-193 (Eco de Geus & Dorret Boomsma), MaGW-nr: 400-07- 080 (Dennis van ‘t Ent), MagW 480-04-004 (Dorret Boomsma), NWO/SPI 56-464-14192 (Dorret Boomsma), the European Research Council, ERC-230374 (Dorret Boomsma), and Amsterdam Neuroscience. OATS: OATS (Older Australian Twins Study) was facilitated by access to Twins Research Australia, which is funded by a National Health and Medical Research Council (NHMRC) Enabling Grant 310667. OATS is also supported via a NHMRC/Australian Research Council Strategic Award (401162) and a NHMRC Project Grant (1045325). DNA extraction was performed by Genetic Repositories Australia, which was funded by a NHMRC Enabling Grant (401184). OATS genotyping was partly funded by a Commonwealth Scientific and Industrial Research Organisation Flagship Collaboration Fund Grant. PAFIP: PAFIP data were collected at the Hospital Universitario Marqués de Valdecilla, University of Cantabria, Santander, Spain, under the following grant support: Carlos III Health Institute PIE14/00031 and SAF2013-46292-R and SAF2015-71526-REDT. We wish to acknowledge IDIVAL Neuroimaging Unit for imaging acquirement and analysis.We want to particularly acknowledge the patients and the BioBankValdecilla (PT13/0010/0024) integrated in the Spanish National Biobanks Network for its collaboration. QTIM: The QTIM study was supported by grants from the US National Institute of Child Health and Human Development (R01 HD050735) and the Australian National Health and Medical Research Council (NHMRC) (486682, 1009064). Genotyping was supported by NHMRC (389875). Lachlan Strike is supported by an Australian Postgraduate Award (APA). AFM is supported by NHMRC CDF 1083656. We thank the twins and siblings for their participation, the many research assistants, as well as the radiographers, for their contribution to data collection and processing of the samples. SHIP: SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grants no. 01ZZ9603, 01ZZ0103, 01ZZ0403 and 01ZZ0701), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania, and the network ‘Greifswald Approach to Individualized Medicine (GANI_MED)’ funded by the Federal Ministry of Education and Research (grant 03IS2061A). Genome-wide data have been supported by the Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant from Siemens Healthineers, Erlangen, Germany and the Federal State of Mecklenburg- West Pomerania. Whole-body MR imaging was supported by a joint grant from Siemens Healthineers, Erlangen, Germany and the Federal State of Mecklenburg West Pomerania. The University of Greifswald is a member of the Caché Campus program of the InterSystems GmbH. StrokeMRI: StrokeMRI has been supported by the Research Council of Norway (249795), the South-Eastern Norway Regional Health Authority (2014097, 2015044, 2015073) and the Norwegian ExtraFoundation for Health and Rehabilitation. TOP: TOP is supported by the Research Council of Norway (223273, 213837, 249711), the South East Norway Health Authority (2017-112), the Kristian Gerhard Jebsen Stiftelsen (SKGJ‐MED‐008) and the European Community’s Seventh Framework Programme (FP7/2007–2013), grant agreement no. 602450 (IMAGEMEND). We acknowledge the technical support and service from the Genomics Core Facility at the Department of Clinical Science, the University of Bergen
dc.format.extent 584-602
dc.language.iso en
dc.publisher Springer Science and Business Media LLC
dc.relation info:eu-repo/grantAgreement/EC/FP7/602450
dc.relation info:eu-repo/grantAgreement/EC/FP7/278948
dc.relation info:eu-repo/grantAgreement/EC/FP7/602805
dc.relation info:eu-repo/grantAgreement/EC/H2020/643051
dc.relation info:eu-repo/grantAgreement/EC/H2020/268800
dc.relation info:eu-repo/grantAgreement/EC/H2020/7202070
dc.relation info:eu-repo/grantAgreement/EC/H2020/695313
dc.relation.ispartofseries Molecular Psychiatry;25(3)
dc.rights info:eu-repo/semantics/openAccess
dc.subject CNVs
dc.subject Neurodevelopmental disorders
dc.subject Autism
dc.subject Schizophrenia
dc.subject Taugasjúkdómar
dc.subject Einhverfa
dc.subject Geðklofi
dc.subject Gen
dc.title Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia
dc.type info:eu-repo/semantics/article
dcterms.license Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
dc.description.version Peer Reviewed
dc.identifier.journal Molecular Psychiatry
dc.identifier.doi 10.1038/s41380-018-0118-1
dc.relation.url https://www.nature.com/articles/s41380-018-0118-1
dc.contributor.department Rafmagns- og tölvuverkfræðideild (HÍ)
dc.contributor.department Faculty of Electrical and Computer Engineering (UI)
dc.contributor.department Læknadeild (HÍ)
dc.contributor.department Faculty of Medicine (UI)
dc.contributor.school Verkfræði- og náttúruvísindasvið (HÍ)
dc.contributor.school School of Engineering and Natural Sciences (UI)
dc.contributor.school Heilbrigðisvísindasvið (HÍ)
dc.contributor.school School of Health Sciences (UI)


Skrár

Þetta verk birtist í eftirfarandi safni/söfnum:

Skoða venjulega færslu