Opin vísindi

The onset of neoglaciation in Iceland and the 4.2 ka event

Skoða venjulega færslu

dc.contributor Háskóli Íslands
dc.contributor University of Iceland
dc.contributor.author Geirsdóttir, Áslaug
dc.contributor.author Miller, G H
dc.contributor.author Andrews, John Thomas
dc.contributor.author Harning, David
dc.contributor.author Anderson, Leif S.
dc.contributor.author Florian, Christopher
dc.contributor.author Larsen, Darren
dc.contributor.author Thordarson, Thorvaldur
dc.date.accessioned 2020-05-28T15:34:59Z
dc.date.available 2020-05-28T15:34:59Z
dc.date.issued 2019-01-08
dc.identifier.citation Geirsdóttir, Á., Miller, G. H., Andrews, J. T., Harning, D. J., Anderson, L. S., Florian, C., Larsen, D. J., and Thordarson, T.: The onset of neoglaciation in Iceland and the 4.2 ka event, Climate of the Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, 2019.
dc.identifier.issn 1814-9332
dc.identifier.uri https://hdl.handle.net/20.500.11815/1861
dc.description Publisher's version (útgefin grein)
dc.description.abstract Strong similarities in Holocene climate reconstructions derived from multiple proxies (BSi, TOC – total organic carbon, δ13C, C∕N, MS – magnetic susceptibility, δ15N) preserved in sediments from both glacial and non-glacial lakes across Iceland indicate a relatively warm early to mid Holocene from 10 to 6 ka, overprinted with cold excursions presumably related to meltwater impact on North Atlantic circulation until 7.9 ka. Sediment in lakes from glacial catchments indicates their catchments were ice-free during this interval. Statistical treatment of the high-resolution multi-proxy paleoclimate lake records shows that despite great variability in catchment characteristics, the sediment records document more or less synchronous abrupt, cold departures as opposed to the smoothly decreasing trend in Northern Hemisphere summer insolation. Although all lake records document a decline in summer temperature through the Holocene consistent with the regular decline in summer insolation, the onset of significant summer cooling occurs ∼5 ka at high-elevation interior sites but is variably later at sites closer to the coast, suggesting that proximity to the sea may modulate the impact from decreasing summer insolation. The timing of glacier inception during the mid Holocene is determined by the descent of the equilibrium line altitude (ELA), which is dominated by the evolution of summer temperature as summer insolation declined as well as changes in sea surface temperature for coastal glacial systems. The glacial response to the ELA decline is also highly dependent on the local topography. The initial ∼5 ka nucleation of Langjökull in the highlands of Iceland defines the onset of neoglaciation in Iceland. Subsequently, a stepwise expansion of both Langjökull and northeast Vatnajökull occurred between 4.5 and 4.0 ka, with a second abrupt expansion ∼3 ka. Due to its coastal setting and lower topographic threshold, the initial appearance of Drangajökull in the NW of Iceland was delayed until ∼2.3 ka. All lake records reflect abrupt summer temperature and catchment disturbance at ∼4.5 ka, statistically indistinguishable from the global 4.2 ka event, and a second widespread abrupt disturbance at 3.0 ka, similar to the stepwise expansion of Langjökull and northeast Vatnajökull. Both are intervals characterized by large explosive volcanism and tephra distribution in Iceland resulting in intensified local soil erosion. The most widespread increase in glacier advance, landscape instability, and soil erosion occurred shortly after 2 ka, likely due to a complex combination of increased impact from volcanic tephra deposition, cooling climate, and increased sea ice off the coast of Iceland. All lake records indicate a strong decline in temperature ∼1.5 ka, which culminated during the Little Ice Age (1250–1850 CE) when the glaciers reached their maximum Holocene dimensions.
dc.description.sponsorship This work was supported primarily by the Icelandic Center for Research through grants awarded to Áslaug Geirsdóttir and Gifford H. Miller (no. 130775051 and Grant of Excellence no. 141573052) and several grants awarded to Áslaug Geirsdóttir from the UI Research Fund. We thank Sædís Ólafsdóttir, Celene Blair, Sydney Gunnarson, Sarah Crump, Thorsteinn Jónsson, and Sveinbjörn Steinthorsson, who all contributed to this work by taking part in field work, laboratory analyses, and/or discussion. Thorough and constructive reviews from two anonymous reviewers have substantially improved the paper.
dc.format.extent 25-40
dc.language.iso en
dc.publisher Copernicus GmbH
dc.relation.ispartofseries Climate of the Past;15(1)
dc.rights info:eu-repo/semantics/openAccess
dc.subject Holocene climate
dc.subject Iceland
dc.subject Glaciers
dc.subject Jöklar
dc.subject Fornveðurfræði
dc.subject Jöklarannsóknir
dc.title The onset of neoglaciation in Iceland and the 4.2 ka event
dc.type info:eu-repo/semantics/article
dcterms.license Open Access. This work is distributed under the Creative Commons Attribution 4.0 License.
dc.description.version Peer Reviewed
dc.identifier.journal Climate of the Past
dc.identifier.doi 10.5194/cp-15-25-2019
dc.relation.url https://www.clim-past.net/15/25/2019/cp-15-25-2019.pdf
dc.contributor.department Jarðvísindadeild (HÍ)
dc.contributor.department Faculty of Earth Sciences (UI)
dc.contributor.school Verkfræði- og náttúruvísindasvið (HÍ)
dc.contributor.school School of Engineering and Natural Sciences (UI)


Skrár

Þetta verk birtist í eftirfarandi safni/söfnum:

Skoða venjulega færslu