Opin vísindi

Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity

Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity

Title: Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity
Author: Waldherr, Max
Lundt, Nils
Klaas, Martin
Betzold, Simon
Wurdack, Matthias
Baumann, Vasilij
Estrecho, Eliezer
Nalitov, Anton   orcid.org/0000-0001-7246-5462
Cherotchenko, Evgenia
Cai, Hui
... 6 more authors Show all authors
Date: 2018-08-16
Language: English
University/Institute: Háskóli Íslands (HÍ)
University of Iceland (UI)
School: Verkfræði- og náttúruvísindasvið (HÍ)
School of Engineering and Natural Sciences (UI)
Department: Raunvísindadeild (HÍ)
Faculty of Physical Sciences (UI)
Series: Nature Communications;9(1)
ISSN: 2041-1723
DOI: 10.1038/s41467-018-05532-7
Subject: Polaritons; Two-dimensional materials; Eðlisfræði; Öreindir
URI: https://hdl.handle.net/20.500.11815/1369

Show full item record


Waldherr, M., Lundt, N., Klaas, M. et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity. Nat Commun 9, 3286 (2018) doi:10.1038/s41467-018-05532-7


Bosonic condensation belongs to the most intriguing phenomena in physics, and was mostly reserved for experiments with ultra-cold quantum gases. More recently, it became accessible in exciton-based solid-state systems at elevated temperatures. Here, we demonstrate bosonic condensation driven by excitons hosted in an atomically thin layer of MoSe2, strongly coupled to light in a solid-state resonator. The structure is operated in the regime of collective strong coupling between a Tamm-plasmon resonance, GaAs quantum well excitons, and two-dimensional excitons confined in the monolayer crystal. Polariton condensation in a monolayer crystal manifests by a superlinear increase of emission intensity from the hybrid polariton mode, its density-dependent blueshift, and a dramatic collapse of the emission linewidth, a hallmark of temporal coherence. Importantly, we observe a significant spin-polarization in the injected polariton condensate, a fingerprint for spin-valley locking in monolayer excitons. Our results pave the way towards highly nonlinear, coherent valleytronic devices and light sources.


Publisher's version (útgefin grein)


This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

Files in this item

This item appears in the following Collection(s)