Opin vísindi

Review of Snow Data Assimilation Methods for Hydrological, Land Surface, Meteorological and Climate Models: Results from a COST HarmoSnow Survey

Review of Snow Data Assimilation Methods for Hydrological, Land Surface, Meteorological and Climate Models: Results from a COST HarmoSnow Survey


Title: Review of Snow Data Assimilation Methods for Hydrological, Land Surface, Meteorological and Climate Models: Results from a COST HarmoSnow Survey
Author: Helmert, Jürgen
Şensoy Şorman, Aynur
Alvarado Montero, Rodolfo
De Michele, Carlo
de Rosnay, Patricia
Dumont, Marie
Finger, David
Lange, Martin
Picard, Ghislain
Potopová, Vera
... 3 more authors Show all authors
Date: 2018-12-14
Language: English
Scope: 489
University/Institute: Háskólinn í Reykjavík
Reykjavik University
School: Tækni og verkfræðideild (HR)
School of Science and Engineering (RU)
Series: Geosciences;8(12)
ISSN: 2076-3263 (eISSN)
DOI: 10.3390/geosciences8120489
Subject: COST Action ES1404; HarmoSnow; Snow measurements; Snow models; Data assimilation; Remote sensing; Snjómælingar; Fjarkönnun; Snjór
URI: https://hdl.handle.net/20.500.11815/1330

Show full item record

Citation:

Helmert, J.; Şensoy Şorman, A.; Alvarado Montero, R.; De Michele, C.; De Rosnay, P.; Dumont, M.; Finger, D.C.; Lange, M.; Picard, G.; Potopová, V.; Pullen, S.; Vikhamar-Schuler, D.; Arslan, A.N. Review of Snow Data Assimilation Methods for Hydrological, Land Surface, Meteorological and Climate Models: Results from a COST HarmoSnow Survey. Geosciences 2018, 8, 489.

Abstract:

The European Cooperation in Science and Technology (COST) Action ES1404 HarmoSnow, entitled, A European network for a harmonized monitoring of snow for the benefit of climate change scenarios, hydrology and numerical weather prediction (2014-2018) aims to coordinate efforts in Europe to harmonize approaches to validation, and methodologies of snow measurement practices, instrumentation, algorithms and data assimilation (DA) techniques. One of the key objectives of the action was Advance the application of snow DA in numerical weather prediction (NWP) and hydrological models and show its benefit for weather and hydrological forecasting as well as other applications. This paper reviews approaches used for assimilation of snow measurements such as remotely sensed and in situ observations into hydrological, land surface, meteorological and climate models based on a COST HarmoSnow survey exploring the common practices on the use of snow observation data in different modeling environments. The aim is to assess the current situation and understand the diversity of usage of snow observations in DA, forcing, monitoring, validation, or verification within NWP, hydrology, snow and climate models. Based on the responses from the community to the questionnaire and on literature review the status and requirements for the future evolution of conventional snow observations from national networks and satellite products, for data assimilation and model validation are derived and suggestions are formulated towards standardized and improved usage of snow observation data in snow DA. Results of the conducted survey showed that there is a fit between the snow macro-physical variables required for snow DA and those provided by the measurement networks, instruments, and techniques. Data availability and resources to integrate the data in the model environment are identified as the current barriers and limitations for the use of new or upcoming snow data sources. Broadening resources to integrate enhanced snow data would promote the future plans to make use of them in all model environments.

Description:

Supplementary Materials: COST ESSEM 1404 working group 3 survey: Questionnaire and results are available at http://www.harmosnow.eu/index.php?page=WG3.

Rights:

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Files in this item

This item appears in the following Collection(s)