Challenge of missing data in observational studies : investigating cross-sectional imputation methods for assessing disease activity in axial spondyloarthritis

dc.contributor.authorGeorgiadis, Stylianos
dc.contributor.authorPons, Marion
dc.contributor.authorRasmussen, Simon
dc.contributor.authorHetland, Merete Lund
dc.contributor.authorLinde, Louise
dc.contributor.authordi Giuseppe, Daniela
dc.contributor.authorMichelsen, Brigitte
dc.contributor.authorWallman, Johan K.
dc.contributor.authorOlofsson, Tor
dc.contributor.authorZavada, Jakub
dc.contributor.authorGlintborg, Bente
dc.contributor.authorLoft, Anne G.
dc.contributor.authorCodreanu, Catalin
dc.contributor.authorMelim, Daniel
dc.contributor.authorAlmeida, Diogo
dc.contributor.authorProvan, Sella Aarrestad
dc.contributor.authorKvien, Tore K.
dc.contributor.authorRantalaiho, Vappu
dc.contributor.authorPeltomaa, Ritva
dc.contributor.authorGuðbjörnsson, Björn
dc.contributor.authorPálsson, Ólafur
dc.contributor.authorRotariu, Ovidiu
dc.contributor.authorMacDonald, Ross
dc.contributor.authorRotar, Ziga
dc.contributor.authorPirkmajer, Katja Perdan
dc.contributor.authorLass, Karin
dc.contributor.authorIannone, Florenzo
dc.contributor.authorCiurea, Adrian
dc.contributor.authorØstergaard, Mikkel
dc.contributor.authorØrnbjerg, L. M.
dc.contributor.departmentFaculty of Medicine
dc.date.accessioned2025-11-20T09:51:28Z
dc.date.available2025-11-20T09:51:28Z
dc.date.issued2025-02-20
dc.descriptionPublisher Copyright: © Author(s) (or their employer(s)) 2025.en
dc.description.abstractObjectives We aimed to compare various methods for imputing disease activity in longitudinally collected observational data of patients with axial spondyloarthritis (axSpA). Methods We conducted a simulation study on data from 8583 axSpA patients from ten European registries. Disease activity was assessed by the Axial Spondyloarthritis Disease Activity Score (ASDAS) and the corresponding low disease activity (LDA; ASDAS<2.1) state at baseline, 6 and 12 months. We focused on cross-sectional methods which impute missing values of an individual at a particular time point based on the available information from other individuals at that time point. We applied nine single and five multiple imputation methods, covering mean, regression and hot deck methods. The performance of each imputation method was evaluated via relative bias and coverage of 95% confidence intervals for the mean ASDAS and the derived proportion of patients in LDA. Results Hot deck imputation methods outperformed mean and regression methods, particularly when assessing LDA. Multiple imputation procedures provided better coverage than the corresponding single imputation ones. However, none of the evaluated methods produced unbiased estimates with adequate coverage across all time points, with performance for missing baseline data being worse than for missing follow-up data. Predictive mean and weighted predictive mean hot deck imputation procedures consistently provided results with low bias Conclusions This study contributes to the available methods for imputing disease activity in observational research. Hot deck imputation using predictive mean matching exhibited the highest robustness and is thus our suggested approach.en
dc.description.versionPeer revieweden
dc.format.extent1444578
dc.format.extent
dc.identifier.citationGeorgiadis, S, Pons, M, Rasmussen, S, Hetland, M L, Linde, L, di Giuseppe, D, Michelsen, B, Wallman, J K, Olofsson, T, Zavada, J, Glintborg, B, Loft, A G, Codreanu, C, Melim, D, Almeida, D, Provan, S A, Kvien, T K, Rantalaiho, V, Peltomaa, R, Guðbjörnsson, B, Pálsson, Ó, Rotariu, O, MacDonald, R, Rotar, Z, Pirkmajer, K P, Lass, K, Iannone, F, Ciurea, A, Østergaard, M & Ørnbjerg, L M 2025, 'Challenge of missing data in observational studies : investigating cross-sectional imputation methods for assessing disease activity in axial spondyloarthritis', RMD Open, vol. 11, no. 1, e004844. https://doi.org/10.1136/rmdopen-2024-004844en
dc.identifier.doi10.1136/rmdopen-2024-004844
dc.identifier.issn2056-5933
dc.identifier.other237119284
dc.identifier.other4e3af5cc-b015-4224-9733-43ca9a679751
dc.identifier.other85218791081
dc.identifier.other39979039
dc.identifier.urihttps://hdl.handle.net/20.500.11815/7809
dc.language.isoen
dc.relation.ispartofseriesRMD Open; 11(1)en
dc.relation.urlhttps://www.scopus.com/pages/publications/85218791081en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.subjectAxial Spondyloarthritisen
dc.subjectEpidemiologyen
dc.subjectInterleukin-17en
dc.subjectTumour Necrosis Factor Inhibitorsen
dc.subjectgigtarlæknisfræðien
dc.subjectRheumatologyen
dc.subjectImmunology and Allergyen
dc.subjectImmunologyen
dc.titleChallenge of missing data in observational studies : investigating cross-sectional imputation methods for assessing disease activity in axial spondyloarthritisen
dc.type/dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/articleen

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Nafn:
e004844.full.pdf
Stærð:
1.38 MB
Snið:
Adobe Portable Document Format

Undirflokkur