Spectral-Spatial Hyperspectral Image Classification Using Subspace-Based Support Vector Machines and Adaptive Markov Random Fields

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributor.authorBenediktsson, Jon Atli
dc.contributor.authorYu, Haoyang
dc.contributor.authorGao, Lianru
dc.contributor.authorLi, Jun
dc.contributor.authorLI, Shan Shan
dc.contributor.authorZhang, Bing
dc.contributor.departmentRafmagns- og tölvuverkfræðideild (HÍ)en_US
dc.contributor.departmentFaculty of Electrical and Computer Engineering (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2016-09-30T14:00:18Z
dc.date.available2016-09-30T14:00:18Z
dc.date.issued2016
dc.description.abstractThis paper introduces a new supervised classification method for hyperspectral images that combines spectral and spatial information. A support vector machine (SVM) classifier, integrated with a subspace projection method to address the problems of mixed pixels and noise, is first used to model the posterior distributions of the classes based on the spectral information. Then, the spatial information of the image pixels is modeled using an adaptive Markov random field (MRF) method. Finally, the maximum posterior probability classification is computed via the simulated annealing (SA) optimization algorithm. The combination of subspace-based SVMs and adaptive MRFs is the main contribution of this paper. The resulting methods, called SVMsub-eMRF and SVMsub-aMRF, were experimentally validated using two typical real hyperspectral data sets. The obtained results indicate that the proposed methods demonstrate superior performance compared with other classical hyperspectral image classification methods.en_US
dc.description.versionRitrýnt tímariten_US
dc.description.versionPeer Reviewed
dc.format.extent1-21en_US
dc.identifier.citationYu, H.; Gao, L.; Li, J.; Li, S.S.; Zhang, B.; Benediktsson, J.A. (2016) Spectral-Spatial Hyperspectral Image Classification Using Subspace-Based Support Vector Machines and Adaptive Markov Random Fields. Remote Sensing, 8(4), 355.en_US
dc.identifier.doi10.3390/rs8040355
dc.identifier.issn2072-4292
dc.identifier.journalRemote Sensingen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/137
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.ispartofseriesRemote Sensing;8(4)
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHyperspectral image classificationen_US
dc.subjectSupport vector machinesen_US
dc.titleSpectral-Spatial Hyperspectral Image Classification Using Subspace-Based Support Vector Machines and Adaptive Markov Random Fieldsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.licenseCC BY 4.0en_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Nafn:
Spectral-Spatial Hyperspectral Image Classification Using Subspace-Based Support Vector Machines and Adaptive Markov Random Fields.pdf
Stærð:
4.07 MB
Snið:
Adobe Portable Document Format
Description:
Publisher´s version

Undirflokkur