Multimodal artificial intelligence foundation models : Unleashing the power of remote sensing big data in earth observation
| dc.contributor | University of Iceland | |
| dc.contributor.author | Hong, Danfeng | |
| dc.contributor.author | Li, Chenyu | |
| dc.contributor.author | Zhang, Bing | |
| dc.contributor.author | Yokoya, Naoto | |
| dc.contributor.author | Benediktsson, Jon Atli | |
| dc.contributor.author | Chanussot, Jocelyn | |
| dc.contributor.department | Faculty of Electrical and Computer Engineering | |
| dc.date.accessioned | 2025-11-20T09:51:39Z | |
| dc.date.available | 2025-11-20T09:51:39Z | |
| dc.date.issued | 2024-03-19 | |
| dc.format.extent | 1631234 | |
| dc.format.extent | ||
| dc.identifier.citation | Hong, D, Li, C, Zhang, B, Yokoya, N, Benediktsson, J A & Chanussot, J 2024, 'Multimodal artificial intelligence foundation models : Unleashing the power of remote sensing big data in earth observation', Innovation Geoscience, vol. 2, no. 1, 100055. https://doi.org/10.59717/j.xinn-geo.2024.100055 | en |
| dc.identifier.doi | 10.59717/j.xinn-geo.2024.100055 | |
| dc.identifier.issn | 2959-8753 | |
| dc.identifier.other | 237245976 | |
| dc.identifier.other | 66334710-be21-4eb8-b591-27a14d2afbf2 | |
| dc.identifier.other | 85189862591 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11815/7812 | |
| dc.language.iso | en | |
| dc.relation.ispartofseries | Innovation Geoscience; 2(1) | en |
| dc.relation.url | https://www.scopus.com/pages/publications/85189862591 | en |
| dc.rights | info:eu-repo/semantics/openAccess | en |
| dc.subject | Earth and Planetary Sciences (miscellaneous) | en |
| dc.subject | Environmental Science (miscellaneous) | en |
| dc.title | Multimodal artificial intelligence foundation models : Unleashing the power of remote sensing big data in earth observation | en |
| dc.type | /dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/editorial | en |
Skrár
Original bundle
1 - 1 af 1
- Nafn:
- Multimodal_artificial_intelligence_foundation_models_Unleashing_the_power_of_remote_sensing_big_data_in_earth_observation.pdf
- Stærð:
- 1.56 MB
- Snið:
- Adobe Portable Document Format