Titanium Dioxide Nanotubes as Model Systems for Electrosorption Studies

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributor.authorLi, Xian
dc.contributor.authorPustulka, Samantha
dc.contributor.authorPedu, Scott
dc.contributor.authorClose, Thomas
dc.contributor.authorXue, Yuan
dc.contributor.authorRichter, Christiaan
dc.contributor.authorTaboada-Serrano, Patricia
dc.contributor.departmentIðnaðarverkfræði-, vélaverkfræði- og tölvunarfræðideild (HÍ)en_US
dc.contributor.departmentFaculty of Industrial Eng., Mechanical Eng. and Computer Science (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2018-12-10T10:44:26Z
dc.date.available2018-12-10T10:44:26Z
dc.date.issued2018-06-05
dc.descriptionPublisher's version (útgefin grein)en_US
dc.description.abstractHighly ordered titanium dioxide nanotubes (TiO2 NTs) were fabricated through anodization and tested for their applicability as model electrodes in electrosorption studies. The crystalline structure of the TiO2 NTs was changed without modifying the nanostructure of the surface. Electrosorption capacity, charging rate, and electrochemical active surface area of TiO2 NTs with two different crystalline structures, anatase and amorphous, were investigated via chronoamperometry, cyclic voltammetry, and electrochemical impedance spectroscopy. The highest electrosorption capacities and charging rates were obtained for the anatase TiO2 NTs, largely because anatase TiO2 has a reported higher electrical conductivity and a crystalline structure that can potentially accommodate small ions within. Both electrosorption capacity and charging rate for the ions studied in this work follow the order of Cs+ > Na+ > Li+, regardless of the crystalline structure of the TiO2 NTs. This order reflects the increasing size of the hydrated ion radii of these monovalent ions. Additionally, larger effective electrochemical active surface areas are required for larger ions and lower conductivities. These findings point towards the fact that smaller hydrated-ions experience less steric hindrance and a larger comparative electrostatic force, enabling them to be more effectively electrosorbed.en_US
dc.description.versionPeer Revieweden_US
dc.format.extent404en_US
dc.identifier.citationLi X, Pustulka S, Pedu S, Close T, Xue Y, Richter C, Taboada-Serrano P. Titanium Dioxide Nanotubes as Model Systems for Electrosorption Studies. Nanomaterials. 2018; 8(6):404. doi:10.3390/nano8060404en_US
dc.identifier.doi10.3390/nano8060404
dc.identifier.issn2079-4991
dc.identifier.journalNanomaterialsen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/944
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.relation.ispartofseriesNanomaterials;8(6)
dc.relation.urlhttp://www.mdpi.com/2079-4991/8/6/404/pdfen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectElectrosorptionen_US
dc.subjectTitania nanotubesen_US
dc.subjectNanostructured electrodesen_US
dc.subjectRafeindaverkfræðien_US
dc.titleTitanium Dioxide Nanotubes as Model Systems for Electrosorption Studiesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.licenseThis is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).en_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Hleð...
Thumbnail Image
Nafn:
nanomaterials-08-00404.pdf
Stærð:
2.41 MB
Snið:
Adobe Portable Document Format
Description:
Publisher´s version (útgefin grein)

Undirflokkur