Hyperspectral Unmixing Using a Neural Network Autoencoder

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributor.authorPalsson, Burkni
dc.contributor.authorSigurdsson, Jakob
dc.contributor.authorSveinsson, Jóhannes Rúnar
dc.contributor.authorUlfarsson, Magnus
dc.contributor.departmentRafmagns- og tölvuverkfræðideild (HÍ)en_US
dc.contributor.departmentFaculty of Electrical and Computer Engineering (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2018-09-24T11:26:53Z
dc.date.available2018-09-24T11:26:53Z
dc.date.issued2018
dc.description.abstractIn this paper, we present a deep learning based method for blind hyperspectral unmixing in the form of a neural network autoencoder. We show that the linear mixture model implicitly puts certain architectural constraints on the network, and it effectively performs blind hyperspectral unmixing. Several different architectural configurations of both shallow and deep encoders are evaluated. Also, deep encoders are tested using different activation functions. Furthermore, we investigate the performance of the method using three different objective functions. The proposed method is compared to other benchmark methods using real data and previously established ground truths of several common data sets. Experiments show that the proposed method compares favorably to other commonly used hyperspectral unmixing methods and exhibits robustness to noise. This is especially true when using spectral angle distance as the network's objective function. Finally, results indicate that a deeper and a more sophisticated encoder does not necessarily give better results.en_US
dc.description.sponsorshipThis work was supported in part by the Icelandic Research Fund under Grant 174075-05 and in part by the Postdoctoral Research Fund at the University of Iceland.en_US
dc.description.versionPeer Revieweden_US
dc.format.extent25646-25656en_US
dc.identifier.citationPalsson, B., Sigurdsson, J., Sveinsson, J. R., & Ulfarsson, M. O. (2018). Hyperspectral Unmixing Using a Neural Network Autoencoder. IEEE Access, 6, 25646-25656. doi:10.1109/ACCESS.2018.2818280en_US
dc.identifier.doi10.1109/ACCESS.2018.2818280
dc.identifier.issn2169-3536
dc.identifier.journalIEEE Accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/854
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.ispartofseriesIEEE Access;6
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHyperspectral unmixingen_US
dc.subjectAutoencoderen_US
dc.subjectDeep learningen_US
dc.subjectNeural networken_US
dc.subjectSpectral angle distanceen_US
dc.subjectEndmember extractionen_US
dc.subjectHugbúnaðarverkfræðien_US
dc.titleHyperspectral Unmixing Using a Neural Network Autoencoderen_US
dc.typeinfo:eu-repo/semantics/articleen_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Hleð...
Thumbnail Image
Nafn:
08322133.pdf
Stærð:
8.38 MB
Snið:
Adobe Portable Document Format
Description:
Publisher´s version (útgefin grein)

Undirflokkur