Gap Prediction in Hybrid Graphene-Hexagonal Boron Nitride Nanoflakes Using Artificial Neural Networks

dc.contributorHáskólinn í Reykjavíken_US
dc.contributorReykjavik Universityen_US
dc.contributor.authorNemnes, G. A.
dc.contributor.authorMitran, T. L.
dc.contributor.authorManolescu, Andrei
dc.contributor.schoolTækni- og verkfræðideild (HR)en_US
dc.contributor.schoolSchool of Science and Engineering (RU)en_US
dc.date.accessioned2020-06-05T16:11:42Z
dc.date.available2020-06-05T16:11:42Z
dc.date.issued2019-05-16
dc.descriptionPublisher's version (útgefin grein)en_US
dc.description.abstractThe electronic properties of graphene nanoflakes (GNFs) with embedded hexagonal boron nitride (hBN) domains are investigated by combined ab initio density functional theory calculations and machine-learning techniques. The energy gaps of the quasi-0D graphene-based systems, defined as the differences between LUMO and HOMO energies, depend not only on the sizes of the hBN domains relative to the size of the pristine graphene nanoflake but also on the position of the hBN domain. The range of the energy gaps for different configurations increases as the hBN domains get larger. We develop two artificial neural network (ANN) models able to reproduce the gap energies with high accuracies and investigate the tunability of the energy gap, by considering a set of GNFs with embedded rectangular hBN domains. In one ANN model, the input is in one-to-one correspondence with the atoms in the GNF, while in the second model the inputs account for basic structures in the GNF, allowing potential use in upscaled systems. We perform a statistical analysis over different configurations of ANNs to optimize the network structure. The trained ANNs provide a correlation between the atomic system configuration and the magnitude of the energy gaps, which may be regarded as an efficient tool for optimizing the design of nanostructured graphene-based materials for specific electronic properties.en_US
dc.description.sponsorshipThe Romanian Ministry of Research and Innovation under the project PN 19060205/2019 and by the Romania-JINR cooperation project.en_US
dc.description.version"Peer Reviewed"en_US
dc.format.extent1-8en_US
dc.identifier.citationNemnes, G. A., Mitran, T. L., & Manolescu, A. (2019). Gap Prediction in Hybrid Graphene-Hexagonal Boron Nitride Nanoflakes Using Artificial Neural Networks. Journal of Nanomaterials, 6960787. https://doi.org/10.1155/2019/6960787en_US
dc.identifier.doi10.1155/2019/6960787
dc.identifier.issn1687-4110
dc.identifier.issn1687-4129 (eISSN)
dc.identifier.journalJournal of Nanomaterialsen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/1883
dc.language.isoenen_US
dc.publisherHindawi Limiteden_US
dc.relation.ispartofseriesJournal of Nanomaterials;2019(6960787)is
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGeneral Materials Scienceen_US
dc.subjectMachine learningen_US
dc.subjectArtificial intelligenceen_US
dc.subjectArtificial neural networksen_US
dc.subjectNanotechnologyen_US
dc.subjectNanomaterialsen_US
dc.subjectGrapheneen_US
dc.subjectBoronen_US
dc.subjectNitrideen_US
dc.subjectEfnisfræðien_US
dc.subjectNanótæknien_US
dc.subjectVélrænt námen_US
dc.subjectGervigreinden_US
dc.subjectHermilíkönen_US
dc.subjectTaugakerfien_US
dc.subjectÁstand efnisen_US
dc.subjectBóren_US
dc.subjectNítröten_US
dc.titleGap Prediction in Hybrid Graphene-Hexagonal Boron Nitride Nanoflakes Using Artificial Neural Networksen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.licenseThis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citeen_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Hleð...
Thumbnail Image
Nafn:
6960787.pdf
Stærð:
1.96 MB
Snið:
Adobe Portable Document Format
Description:
Publisher's version (útgefin grein)

Undirflokkur