Machine learning predictive system based upon radiodensitometric distributions from mid-thigh CT images

dc.contributorHáskólinn í Reykjavíken_US
dc.contributorReykjavik Universityen_US
dc.contributor.authorRecenti, Marco
dc.contributor.authorRicciardi, Carlo
dc.contributor.authorEdmunds, Kyle
dc.contributor.authorGislason, Magnus K.
dc.contributor.authorGargiulo, Paolo
dc.contributor.departmentInstitute of Biomedical and Neural Engineering (IBNE) (RU)en_US
dc.contributor.schoolTæknisvið (HR)en_US
dc.contributor.schoolSchool of Technology (RU)en_US
dc.date.accessioned2021-02-05T13:15:55Z
dc.date.available2021-02-05T13:15:55Z
dc.date.issued2020-04-01
dc.descriptionPublisher's version (útgefin grein)en_US
dc.description.abstractThe nonlinear trimodal regression analysis (NTRA) method based on radiodensitometric CT images distributions was developed for the quantitative characterization of soft tissue changes according to the lower extremity function of elderly subjects. In this regard, the NTRA method defines 11 subject-specific soft tissue parameters and has illustrated high sensitivity to changes in skeletal muscle form and function. The present work further explores the use of these 11 NTRA parameters in the construction of a machine learning (ML) system to predict body mass index and isometric leg strength using tree-based regression algorithms. Results obtained from these models demonstrate that when using an ML approach, these soft tissue features have a significant predictive value for these physiological parameters. These results further support the use of NTRA-based ML predictive assessment and support the future investigation of other physiological parameters and comorbidities.en_US
dc.description.version"Peer Reviewed"en_US
dc.format.extent121-124en_US
dc.identifier.citationRecenti, M., Ricciardi, C., Edmunds, K., Gislason, M. K., & Gargiulo, P. (2020). Machine learning predictive system based upon radiodensitometric distributions from mid-thigh CT images. EUROPEAN JOURNAL OF TRANSLATIONAL MYOLOGY, 30(1), 121–124. https://doi.org/10.4081/ejtm.2019.8892en_US
dc.identifier.doi10.4081/ejtm.2019.8892
dc.identifier.issn2037-7452
dc.identifier.issn2037-7460 (eISSN)
dc.identifier.urihttps://hdl.handle.net/20.500.11815/2451
dc.language.isoenen_US
dc.publisherPAGEPress Publicationsen_US
dc.relation.ispartofseriesEuropean Journal of Translational Myology;30(1)
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMachine learningen_US
dc.subjectSoft tissueen_US
dc.subjectComputed tomographyen_US
dc.subjectBody mass indexen_US
dc.subjectIsometric leg strengthen_US
dc.subjectVélrænt námen_US
dc.subjectStoðvefuren_US
dc.subjectSneiðmyndatökuren_US
dc.subjectLíkamsþyngdarstuðullen_US
dc.subjectStoðkerfi (líffærafræði)en_US
dc.titleMachine learning predictive system based upon radiodensitometric distributions from mid-thigh CT imagesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.licenseThis article is distributed under the terms of the Creative Commons Attribution Noncommercial License (CC BY-NC 4.0) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.en_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Hleð...
Thumbnail Image
Nafn:
8892-Article Text-45578-2-10-20200505(1).pdf
Stærð:
542.29 KB
Snið:
Adobe Portable Document Format
Description:
Publisher's version (útgefin grein)

Undirflokkur