Blind Hyperspectral Unmixing using Autoencoders : A Critical Comparison

dc.contributor.authorPálsson, Burkni
dc.contributor.authorSveinsson, Jóhannes Rúnar
dc.contributor.authorÚlfarsson, Magnús Örn
dc.contributor.departmentFaculty of Electrical and Computer Engineering
dc.date.accessioned2025-11-20T08:41:12Z
dc.date.available2025-11-20T08:41:12Z
dc.date.issued2022-01-01
dc.descriptionFunding Information: This work was supported in part by the Icelandic Research Fund under Grant 174075-05 and 207233-052. Publisher Copyright: © 2008-2012 IEEE.en
dc.description.abstractDeep learning has shown to be a powerful tool and has heavily impacted the data-intensive field of remote sensing. As a result, the number of published deep learning-based spectral unmixing techniques is proliferating. Blind hyperspectral unmixing (HU) is the process of resolving the measured spectrum of a pixel into a combination of a set of spectral signatures called endmembers and simultaneously determining their fractional abundances in the pixel. This paper details the various autoencoder architectures used in HU and provides a critical comparison of some of the existing published blind unmixing methods based on autoencoders. Eleven different autoencoder methods and one traditional method will be compared in blind unmixing experiments using four real datasets and four synthetic datasets with different spectral variability. Additionally, extensive ablation experiments with a simple spectral unmixing autoencoder will be performed. The results are interpreted in terms of the various implementation details, and the question of why autoencoder methods are so powerful compared to traditional methods is unraveled. The source codes for all methods implemented in this paper can be found at the following location: https://github.com/burknipalsson/hu_autoencoders.en
dc.description.versionPeer revieweden
dc.format.extent33
dc.format.extent17832921
dc.format.extent1340-1372
dc.identifier.citationPálsson, B, Sveinsson, J R & Úlfarsson, M Ö 2022, 'Blind Hyperspectral Unmixing using Autoencoders : A Critical Comparison', IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 1340-1372. https://doi.org/10.1109/JSTARS.2021.3140154en
dc.identifier.doi10.1109/JSTARS.2021.3140154
dc.identifier.issn1939-1404
dc.identifier.other45117707
dc.identifier.other279bd3e4-cec0-4358-8d10-411c228ceee2
dc.identifier.other85122884562
dc.identifier.otherunpaywall: 10.1109/jstars.2021.3140154
dc.identifier.urihttps://hdl.handle.net/20.500.11815/6636
dc.language.isoen
dc.relation.ispartofseriesIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing; 15()en
dc.relation.urlhttps://www.scopus.com/pages/publications/85122884562en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.subjectAtmospheric modelingen
dc.subjectautoencoderen
dc.subjectdeep learningen
dc.subjectFeature extractionen
dc.subjectHyperspectral data unmixingen
dc.subjectHyperspectral imagingen
dc.subjectimage processingen
dc.subjectmultitask learningen
dc.subjectneural networken
dc.subjectObject detectionen
dc.subjectSparse matricesen
dc.subjectSpatial resolutionen
dc.subjectspectral-spatial modelen
dc.subjectSpectroscopyen
dc.subjectComputers in Earth Sciencesen
dc.subjectAtmospheric Scienceen
dc.titleBlind Hyperspectral Unmixing using Autoencoders : A Critical Comparisonen
dc.type/dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/articleen

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Nafn:
Blind_Hyperspectral_Unmixing_Using_Autoencoders_A_Critical_Comparison.pdf
Stærð:
17.01 MB
Snið:
Adobe Portable Document Format

Undirflokkur