A Hierarchical Spatiotemporal Statistical Model Motivated by Glaciology

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributor.authorGopalan, Giri
dc.contributor.authorHrafnkelsson, Birgir
dc.contributor.authorWikle, Christopher K.
dc.contributor.authorRue, Håvard
dc.contributor.authorAdalgeirsdottir, Gudfinna
dc.contributor.authorJarosch, Alexander H.
dc.contributor.authorPálsson, Finnur
dc.contributor.departmentRaunvísindadeild (HÍ)en_US
dc.contributor.departmentFaculty of Physical Sciences (UI)en_US
dc.contributor.departmentJarðvísindadeild (HÍ)en_US
dc.contributor.departmentFaculty of Earth Sciences (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2020-08-10T13:21:35Z
dc.date.available2020-08-10T13:21:35Z
dc.date.issued2019-06-12
dc.descriptionThis is a post-peer-review, pre-copyedit version of an article published in Journal of Agricultural, Biological and Environmental Statistics. The final authenticated version is available online at: http://dx.doi.org/10.1007/s13253-019-00367-1en_US
dc.description.abstractIn this paper, we extend and analyze a Bayesian hierarchical spatiotemporal model for physical systems. A novelty is to model the discrepancy between the output of a computer simulator for a physical process and the actual process values with a multivariate random walk. For computational efficiency, linear algebra for bandwidth limited matrices is utilized, and first-order emulator inference allows for the fast emulation of a numerical partial differential equation (PDE) solver. A test scenario from a physical system motivated by glaciology is used to examine the speed and accuracy of the computational methods used, in addition to the viability of modeling assumptions. We conclude by discussing how the model and associated methodology can be applied in other physical contexts besides glaciology.en_US
dc.description.sponsorshipIcelandic Centre for Research (152457).en_US
dc.description.versionPeer revieweden_US
dc.format.extent669-692en_US
dc.identifier.citationGopalan, G., Hrafnkelsson, B., Wikle, C.K. et al. A Hierarchical Spatiotemporal Statistical Model Motivated by Glaciology. JABES 24, 669–692 (2019). https://doi.org/10.1007/s13253-019-00367-1en_US
dc.identifier.doi10.1007/s13253-019-00367-1
dc.identifier.issn1085-7117
dc.identifier.issn1537-2693 (eISSN)
dc.identifier.journalJournal of Agricultural, Biological and Environmental Statisticsen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/1949
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.ispartofseriesJournal of Agricultural, Biological and Environmental Statistics;24(4)
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectModel discrepancyen_US
dc.subjectUncertainty quantificationen_US
dc.subjectEmulationen_US
dc.subjectReiknilíkönen_US
dc.subjectJöklafræðien_US
dc.titleA Hierarchical Spatiotemporal Statistical Model Motivated by Glaciologyen_US
dc.typeinfo:eu-repo/semantics/articleen_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Nafn:
1811.08472v2.pdf
Stærð:
2.72 MB
Snið:
Adobe Portable Document Format
Description:
Post-print (lokagerð höfundar)

Undirflokkur