Predictability of seasonal mood fluctuations based on self-report questionnaires and EEG biomarkers in a non-clinical sample

Útdráttur

Induced by decreasing light, people affected by seasonal mood fluctuations may suffer from low energy, have low interest in activities, experience changes in weight, insomnia, difficulties in concentration, depression, and suicidal thoughts. Few studies have been conducted in search for biological predictors of seasonal mood fluctuations in the brain, such as EEG oscillations. A sample of 64 participants was examined with questionnaires and electroencephalography in summer. In winter, a follow-up survey was recorded and participants were grouped into those with at least mild (N = 18) and at least moderate (N = 11) mood decline and those without self-reported depressive symptoms both in summer and in winter (N = 46). A support vector machine was trained to predict mood decline by either EEG biomarkers alone, questionnaire data from baseline alone, or a combination of the two. Leave-one-out-cross validation with lasso regularization was used with logistic regression to fit a model. The accuracy for classification for at least mild/moderate mood decline was 77/82% for questionnaire data, 72/82% for EEG alone, and 81/86% for EEG combined with questionnaire data. Self-report data was more conclusive than EEG biomarkers recorded in summer for prediction of worsening of depressive symptoms in winter but it is advantageous to combine EEG with psychological assessment to boost predictive performance.

Lýsing

Funding Information: The study was supported by the Research Fund of the University of Akureyri (RHA, R1916). Funding Information: We thank the BS-students Anna Hj?lmeig Hannesd?ttir, El?sa Huld Jensd?ttir, M?ni Sn?r Hafd?sarson, Sara Teresa J?nsd?ttir, Sigr?n Mar?a ?skarsd?ttir, and Silja Hl?n Magn?sd?ttir at the Faculty of Psychology of the University of Akureyri for recruitment and data collection. Also many thanks to the BS-students of the Faculties of Psychology at the University of Iceland, Anton Nikolaisson Haydarly, Elena Arngr?msd?ttir, Erla ?str?s J?nsd?ttir, Inga Vald?s T?masd?ttir, Mar?a Lov?sa Brei?dal, and ?l?f Traustad?ttir to sample the data in the online part of the study. Publisher Copyright: Copyright © 2022 Höller, Urbschat, Kristófersson and Ólafsson.

Efnisorð

cognitive vulnerabilities, EEG biomarkers, machine learning, prediction, seasonal affective disorder winter depression, seasonal mood fluctuations, Psychiatry and Mental Health, SDG 2 - Zero Hunger, SDG 6 - Clean Water and Sanitation, SDG 3 - Good Health and Well-being, SDG 4 - Quality Education, SDG 1 - No Poverty, SDG 5 - Gender Equality, SDG 10 - Reduced Inequalities, SDG 11 - Sustainable Cities and Communities, SDG 12 - Responsible Consumption and Production, SDG 13 - Climate Action, SDG 14 - Life Below Water, SDG 15 - Life on Land, SDG 16 - Peace, Justice and Strong Institutions, SDG 17 - Partnerships for the Goals, SDG 7 - Affordable and Clean Energy, SDG 8 - Decent Work and Economic Growth, SDG 9 - Industry, Innovation, and Infrastructure

Citation

Höller, Y, Urbschat, M M, Kristófersson, G K & Ólafsson, R P 2022, 'Predictability of seasonal mood fluctuations based on self-report questionnaires and EEG biomarkers in a non-clinical sample', Frontiers in Psychiatry, vol. 13, 870079. https://doi.org/10.3389/fpsyt.2022.870079