All-optical band engineering of gapped Dirac materials
dc.contributor | Háskóli Íslands | en_US |
dc.contributor | University of Iceland | en_US |
dc.contributor.author | Kibis, Oleg | |
dc.contributor.author | Dini, Kevin Tanguy Elian | |
dc.contributor.author | Iorsh, Ivan | |
dc.contributor.author | Shelykh, Ivan | |
dc.contributor.department | Raunvísindastofnun (HÍ) | en_US |
dc.contributor.department | Science Institute (UI) | en_US |
dc.contributor.school | Verkfræði- og náttúruvísindasvið (HÍ) | en_US |
dc.contributor.school | School of Engineering and Natural Sciences (UI) | en_US |
dc.date.accessioned | 2019-03-06T10:22:39Z | |
dc.date.available | 2019-03-06T10:22:39Z | |
dc.date.issued | 2017-03-01 | |
dc.description | Publisher's version (útgefin grein) | en_US |
dc.description.abstract | We demonstrate theoretically that the interaction of electrons in gapped Dirac materials (gapped graphene and transition-metal dichalchogenide monolayers) with a strong off-resonant electromagnetic field (dressing field) substantially renormalizes the band gaps and the spin-orbit splitting. Moreover, the renormalized electronic parameters drastically depend on the field polarization. Namely, a linearly polarized dressing field always decreases the band gap (and, particularly, can turn the gap into zero), whereas a circularly polarized field breaks the equivalence of valleys in different points of the Brillouin zone and can both increase and decrease corresponding band gaps. As a consequence, the dressing field can serve as an effective tool to control spin and valley properties of the materials and be potentially exploited in optoelectronic applications. | en_US |
dc.description.sponsorship | The work was partially supported by the RISE project CoExAN, FP7 ITN project NOTEDEV, RFBR projects 16- 32-60123 and 17-02-00053, the Rannis projects 141241-051 and 163082-051, and the Ministry of Education and Science of the Russian Federation (projects 3.1365.2017, 3.2614.2017, and 3.4573.2017). O.V.K. and I.V.I. acknowledge support from the Ministry of Education—Singapore, AcRF Tier 2 Grant No. MOE2015-T2-1-055. | en_US |
dc.description.version | Peer Reviewed | en_US |
dc.format.extent | 125401 | en_US |
dc.identifier.citation | Kibis, O. V., Dini, K., Iorsh, I. V., & Shelykh, I. A. (2017). All-optical band engineering of gapped Dirac materials. Physical Review B, 95(12), 125401. doi:10.1103/PhysRevB.95.125401 | en_US |
dc.identifier.doi | 10.1103/PhysRevB.95.125401 | |
dc.identifier.issn | 2469-9950 | |
dc.identifier.issn | 2469-9969 (eISSN) | |
dc.identifier.journal | Physical Review B | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11815/1037 | |
dc.language.iso | en | en_US |
dc.publisher | American Physical Society (APS) | en_US |
dc.relation | info:eu-repo/grantAgreement/EC/FP7/607521 | en_US |
dc.relation.ispartofseries | Physical Review B;95(12) | |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Band gap | en_US |
dc.subject | Electronic structure | en_US |
dc.subject | Valleytronics | en_US |
dc.subject | Graphene | en_US |
dc.subject | Transition-metal dichalcogenide | en_US |
dc.subject | Condensed Matter & Materials Physics | en_US |
dc.subject | Þéttefnisfræði | en_US |
dc.subject | Rafeindir | en_US |
dc.subject | Rafsegulfræði | en_US |
dc.title | All-optical band engineering of gapped Dirac materials | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
Skrár
Original bundle
1 - 1 af 1
- Nafn:
- PhysRevB.95.125401.pdf
- Stærð:
- 1.06 MB
- Snið:
- Adobe Portable Document Format
- Description:
- Publisher´s version (útgefin grein)