All-optical band engineering of gapped Dirac materials

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributor.authorKibis, Oleg
dc.contributor.authorDini, Kevin Tanguy Elian
dc.contributor.authorIorsh, Ivan
dc.contributor.authorShelykh, Ivan
dc.contributor.departmentRaunvísindastofnun (HÍ)en_US
dc.contributor.departmentScience Institute (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2019-03-06T10:22:39Z
dc.date.available2019-03-06T10:22:39Z
dc.date.issued2017-03-01
dc.descriptionPublisher's version (útgefin grein)en_US
dc.description.abstractWe demonstrate theoretically that the interaction of electrons in gapped Dirac materials (gapped graphene and transition-metal dichalchogenide monolayers) with a strong off-resonant electromagnetic field (dressing field) substantially renormalizes the band gaps and the spin-orbit splitting. Moreover, the renormalized electronic parameters drastically depend on the field polarization. Namely, a linearly polarized dressing field always decreases the band gap (and, particularly, can turn the gap into zero), whereas a circularly polarized field breaks the equivalence of valleys in different points of the Brillouin zone and can both increase and decrease corresponding band gaps. As a consequence, the dressing field can serve as an effective tool to control spin and valley properties of the materials and be potentially exploited in optoelectronic applications.en_US
dc.description.sponsorshipThe work was partially supported by the RISE project CoExAN, FP7 ITN project NOTEDEV, RFBR projects 16- 32-60123 and 17-02-00053, the Rannis projects 141241-051 and 163082-051, and the Ministry of Education and Science of the Russian Federation (projects 3.1365.2017, 3.2614.2017, and 3.4573.2017). O.V.K. and I.V.I. acknowledge support from the Ministry of Education—Singapore, AcRF Tier 2 Grant No. MOE2015-T2-1-055.en_US
dc.description.versionPeer Revieweden_US
dc.format.extent125401en_US
dc.identifier.citationKibis, O. V., Dini, K., Iorsh, I. V., & Shelykh, I. A. (2017). All-optical band engineering of gapped Dirac materials. Physical Review B, 95(12), 125401. doi:10.1103/PhysRevB.95.125401en_US
dc.identifier.doi10.1103/PhysRevB.95.125401
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969 (eISSN)
dc.identifier.journalPhysical Review Ben_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/1037
dc.language.isoenen_US
dc.publisherAmerican Physical Society (APS)en_US
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/607521en_US
dc.relation.ispartofseriesPhysical Review B;95(12)
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBand gapen_US
dc.subjectElectronic structureen_US
dc.subjectValleytronicsen_US
dc.subjectGrapheneen_US
dc.subjectTransition-metal dichalcogenideen_US
dc.subjectCondensed Matter & Materials Physicsen_US
dc.subjectÞéttefnisfræðien_US
dc.subjectRafeindiren_US
dc.subjectRafsegulfræðien_US
dc.titleAll-optical band engineering of gapped Dirac materialsen_US
dc.typeinfo:eu-repo/semantics/articleen_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Nafn:
PhysRevB.95.125401.pdf
Stærð:
1.06 MB
Snið:
Adobe Portable Document Format
Description:
Publisher´s version (útgefin grein)

Undirflokkur