Automatic Framework for Spectral–Spatial Classification Based on Supervised Feature Extraction and Morphological Attribute Profiles

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Iceland
dc.contributor.authorGhamisi, Pedram
dc.contributor.authorBenediktsson, Jon Atli
dc.contributor.authorCavallaro, Gabriele
dc.contributor.authorPlaza, Antonio
dc.contributor.departmentRafmagns- og tölvuverkfræðideilden_US
dc.contributor.departmentFaculty of Electrical and Computer Engineeringen_US
dc.contributor.schoolVerkfræði- og náttúruvísindasviðen_US
dc.contributor.schoolSchool of Engineering and Natural Sciencesen_US
dc.date.accessioned2016-08-18T09:17:16Z
dc.date.available2016-08-18T09:17:16Z
dc.date.issued2014
dc.description.abstractSupervised classification plays a key role in terms of accurate analysis of hyperspectral images. Many applications can greatly benefit from the wealth of spectral and spatial information provided by these kind of data, including land-use and land-cover mapping. Conventional classifiers treat hyperspectral images as a list of spectral measurements and do not consider spatial dependencies of the adjacent pixels. To overcome these limitations, classifiers need to use both spectral and spatial information. In this paper, a framework for automatic spectral-spatial classification of hyperspectral images is proposed. In order to extract the spatial information, Extended Multi-Attribute Profiles (EMAPs) are taken into account. In addition, in order to reduce the redundancy of features and address the so-called curse of dimensionality, different supervised feature extraction (FE) techniques are considered. The final classification map is provided by using a random forest classifier. The proposed automatic framework is tested on two widely used hyperspectral data sets; Pavia University and Indian Pines. Experimental results confirm that the proposed framework automatically provides accurate classification maps in acceptable CPU processing times.en_US
dc.description.sponsorshipRannís. Rannsóknarnámssjóður. Icelandic Research Fund for Graduate Studentsen_US
dc.description.versionPostPrinten_US
dc.format.extent2147-2160en_US
dc.identifier.citationP. Ghamisi, J. A. Benediktsson, G. Cavallaro and A. Plaza. 2014 "Automatic Framework for Spectral–Spatial Classification Based on Supervised Feature Extraction and Morphological Attribute Profiles," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 6, pp. 2147-2160.en_US
dc.identifier.doi10.1109/JSTARS.2014.2298876
dc.identifier.issn1939-1404
dc.identifier.journalIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Volume:7 , Issue: 6 )en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/65
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofseriesIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing; 7:6
dc.relation.urlen_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.subjectAccuracyen_US
dc.subjectData miningen_US
dc.subjectFeature extractionen_US
dc.subjectHyperspectral imagingen_US
dc.subjectIronen_US
dc.subjectVectorsen_US
dc.subjectGagnavinnsla
dc.subjectSkráning gagna
dc.titleAutomatic Framework for Spectral–Spatial Classification Based on Supervised Feature Extraction and Morphological Attribute Profilesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.license(c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.en_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Hleð...
Thumbnail Image
Nafn:
PostPrint_Automatic_Framework_for_Spectral_Spatial.pdf
Stærð:
1.86 MB
Snið:
Adobe Portable Document Format
Description:
Post print. Lokaútgáfa höfunda. DOI for the published version:10.1109/JSTARS.2014.2298876 - DOI á lokagerð hjá útgefanda:10.1109/JSTARS.2014.2298876

Undirflokkur