Remote Sensing Image Classification Using Attribute Filters Defined over the Tree of Shapes

dc.contributorHáskóli Íslandsis
dc.contributorUniversity of Icelandis
dc.contributor.authorBenediktsson, Jon Atli
dc.contributor.authorCavallaro, Gabriele
dc.contributor.authorDalla Mura, Mauro
dc.contributor.authorPlaza, Antonio
dc.contributor.departmentRafmagns- og tölvuverkfræðideild (HÍ)en_US
dc.contributor.departmentFaculty of Electrical and Computer Engineering (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2016-08-11T10:52:52Z
dc.date.available2016-08-11T10:52:52Z
dc.date.issued2016
dc.date.submitted2015
dc.descriptionPost-print. Lokaútgáfa höfundaen_US
dc.description.abstractRemotely sensed images with very high spatial resolution provide a detailed representation of the surveyed scene with a geometrical resolution that, at the present, can be up to 30 cm (WorldView-3). A set of powerful image processing operators have been defined in the mathematical morphology framework. Among those, connected operators [e.g., attribute filters (AFs)] have proven their effectiveness in processing very high resolution images. AFs are based on attributes which can be efficiently implemented on tree-based image representations. In this paper, we considered the definition of min, max, direct, and subtractive filter rules for the computation of AFs over the tree-of-shapes representation. We study their performance on the classification of remotely sensed images. We compare the classification results over the tree of shapes with the results obtained when the same rules are applied on the component trees. The random forest is used as a baseline classifier, and the experiments are conducted using multispectral data sets acquired by QuickBird and IKONOS sensors over urban areas.en_US
dc.description.sponsorshipEU FP7 Theme Space project North State, The program J. Verne 2014 under Project 31936TD, and the INS2I JCJC 2015 under project “IDES”en_US
dc.description.versionPeer Revieweden_US
dc.format.extent3899 - 3911en_US
dc.identifier.citationGabriele Cavallaro, Mauro Dalla Mura, Jón Atli Benediktsson, Antonio Plaza. "Remote Sensing Image Classification Using Attribute Filters Defined over the Tree of Shapes." IEEE Transactions on Geoscience and Remote Sensing (Volume:54, Issue:7)en_US
dc.identifier.issn0196-2892
dc.identifier.journalIEEE Transactions on Geoscience and Remote Sensingen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/59
dc.language.isoenen_US
dc.publisherIEEE Geoscience & Remote Sensing Societyen_US
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/606962en_US
dc.relation.urlDOI: 10.1109/TGRS.2016.2530690en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGray-scaleen_US
dc.subjectMorphologyen_US
dc.subjectRemote sensingen_US
dc.subjectShapeen_US
dc.subjectSpatial resolutionen_US
dc.subjectVegetationen_US
dc.titleRemote Sensing Image Classification Using Attribute Filters Defined over the Tree of Shapesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.license(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.en_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Hleð...
Thumbnail Image
Nafn:
PostPrint_Remote Sensing Image Classification Using Attribute Filters Defined over the Tree of Shapes.pdf
Stærð:
5.77 MB
Snið:
Adobe Portable Document Format
Description:
Post print. Lokaútgáfa höfunda. DOI for the published version:10.1109/TGRS.2016.2530690 - DOI á útgefna lokaútgáfur: 10.1109/TGRS.2016.2530690

Undirflokkur