Improving prosthetic selection and predicting BMD from biometric measurements in patients receiving total hip arthroplasty

dc.contributor.authorRicciardi, Carlo
dc.contributor.authorJónsson, Halldór
dc.contributor.authorJacob, Deborah
dc.contributor.authorImprota, Giovanni
dc.contributor.authorRecenti, Marco
dc.contributor.authorGíslason, Magnús Kjartan
dc.contributor.authorCesarelli, Giuseppe
dc.contributor.authorEsposito, Luca
dc.contributor.authorMinutolo, Vincenzo
dc.contributor.authorBifulco, Paolo
dc.contributor.authorGargiulo, Paolo
dc.contributor.departmentFaculty of Medicine
dc.date.accessioned2025-11-20T08:38:36Z
dc.date.available2025-11-20T08:38:36Z
dc.date.issued2020-10-14
dc.descriptionThis research was supported jointly by the University of Reykjavik and the Icelandic National Hospital (Landspítali Scientific Fund; PI: Paolo Gargiulo; Title: Bone modeling in patients undergoing THA; Project Number: A-2014-072) with additional funding support from Rannís (Rannís Icelandic Research Fund (Rannsóknasjodur); PI: Paolo Gargiulo; Title: Clinical evaluation score for Total Hip Arthroplasty planning and postoperative assessment; Project Number: 152368-051). The authors wish to thank the A&C M-C Foundation of Translational Myology, Padova, Italy for sponsorship the publication. Publisher Copyright: © 2020 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.description.abstractThere are two surgical approaches to performing total hip arthroplasty (THA): a cemented or uncemented type of prosthesis. The choice is usually based on the experience of the orthopaedic surgeon and on parameters such as the age and gender of the patient. Using machine learning (ML) techniques on quantitative biomechanical and bone quality data extracted from computed tomography, electromyography and gait analysis, the aim of this paper was, firstly, to help clinicians use patient-specific biomarkers from diagnostic exams in the prosthetic decision-making process. The second aim was to evaluate patient long-term outcomes by predicting the bone mineral density (BMD) of the proximal and distal parts of the femur using advanced image processing analysis techniques and ML. The ML analyses were performed on diagnostic patient data extracted from a national database of 51 THA patients using the Knime analytics platform. The classification analysis achieved 93% accuracy in choosing the type of prosthesis; the regression analysis on the BMD data showed a coefficient of determination of about 0.6. The start and stop of the electromyographic signals were identified as the best predictors. This study shows a patient-specific approach could be helpful in the decision-making process and provide clinicians with information regarding the follow up of patients.en
dc.description.versionPeer revieweden
dc.format.extent1760823
dc.format.extent
dc.identifier.citationRicciardi, C, Jónsson, H, Jacob, D, Improta, G, Recenti, M, Gíslason, M K, Cesarelli, G, Esposito, L, Minutolo, V, Bifulco, P & Gargiulo, P 2020, 'Improving prosthetic selection and predicting BMD from biometric measurements in patients receiving total hip arthroplasty', Diagnostics, vol. 10, no. 10, 0815. https://doi.org/10.3390/diagnostics10100815en
dc.identifier.doi10.3390/diagnostics10100815
dc.identifier.issn2075-4418
dc.identifier.other43769867
dc.identifier.other5154b376-c45c-4d0a-9ce7-4d9b2c5ad69d
dc.identifier.other85092701427
dc.identifier.other33066350
dc.identifier.otherresearchoutputwizard: hdl.handle.net/2336/621602
dc.identifier.urihttps://hdl.handle.net/20.500.11815/6590
dc.language.isoen
dc.relation.ispartofseriesDiagnostics; 10(10)en
dc.relation.urlhttps://www.scopus.com/pages/publications/85092701427en
dc.relation.urlhttps://www.mdpi.com/2075-4418/10/10/815en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.subjectClinical decision makingen
dc.subjectDatabase analysesen
dc.subjectElectromyographyen
dc.subjectMachine learningen
dc.subjectTotal hip arthroplastyen
dc.subjectMjaðmaaðgerðiren
dc.subjectLiðskiptaaðgerðiren
dc.subjectArthroplasty, Replacement, Hipen
dc.subjectClinical Decision-Makingen
dc.subjectclinical decision makingen
dc.subjectdatabase analysesen
dc.subjectelectromyographyen
dc.subjectmachine learningen
dc.subjecttotal hip arthroplastyen
dc.subjectMjaðmaaðgerðiren
dc.subjectLiðskiptaaðgerðiren
dc.subjectArthroplasty, Replacement, Hipen
dc.subjectClinical Decision-Makingen
dc.subjectClinical Biochemistryen
dc.titleImproving prosthetic selection and predicting BMD from biometric measurements in patients receiving total hip arthroplastyen
dc.type/dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/articleen

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Nafn:
diagnostics_10_00815.pdf
Stærð:
1.68 MB
Snið:
Adobe Portable Document Format

Undirflokkur