Spectral–Spatial Classification of Hyperspectral Images Based on Hidden Markov Random Fields

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributor.authorBenediktsson, Jon Atli
dc.contributor.authorUlfarsson, Magnus
dc.contributor.authorGhamisi, Pedram
dc.contributor.departmentRafmagns- og tölvuverkfræðideild (HÍ)en_US
dc.contributor.departmentFaculty of Electrical and Computer Engineering (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2016-10-06T15:17:01Z
dc.date.available2016-10-06T15:17:01Z
dc.date.issued2014
dc.description.abstractHyperspectral remote sensing technology allows one to acquire a sequence of possibly hundreds of contiguous spectral images from ultraviolet to infrared. Conventional spectral classifiers treat hyperspectral images as a list of spectral measurements and do not consider spatial dependences, which leads to a dramatic decrease in classification accuracies. In this paper, a new automatic framework for the classification of hyperspectral images is proposed. The new method is based on combining hidden Markov random field segmentation with support vector machine (SVM) classifier. In order to preserve edges in the final classification map, a gradient step is taken into account. Experiments confirm that the new spectral and spatial classification approach is able to improve results significantly in terms of classification accuracies compared to the standard SVM method and also outperforms other studied methods.en_US
dc.description.versionRitrýnt tímariten_US
dc.description.versionPeer reviewed
dc.format.extent2565-2574en_US
dc.identifier.citationP. Ghamisi, J. A. Benediktsson and M. O. Ulfarsson. (2014). Spectral–Spatial Classification of Hyperspectral Images Based on Hidden Markov Random Fields. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2565-2574. doi: 10.1109/TGRS.2013.2263282en_US
dc.identifier.doi10.1109/TGRS.2013.2263282
dc.identifier.issn0196-2892
dc.identifier.issn1558-0644 (e-ISSN)
dc.identifier.journalIEEE Transactions on Geoscience and Remote Sensingen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/141
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofseriesIEEE Transactions on Geoscience and Remote Sensing;52(5)
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSupport vector machinesen_US
dc.subjectGeophysical image processingen_US
dc.subjectHyperspectral imagingen_US
dc.titleSpectral–Spatial Classification of Hyperspectral Images Based on Hidden Markov Random Fieldsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.license(c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other worksen_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Hleð...
Thumbnail Image
Nafn:
Spectral-Spatial_HRM.pdf
Stærð:
2 MB
Snið:
Adobe Portable Document Format
Description:

Undirflokkur