A holographic model for black hole complementarity

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributor.authorLowe, David A.
dc.contributor.authorThorlacius, Larus
dc.contributor.departmentRaunvísindastofnun (HÍ)en_US
dc.contributor.departmentScience Institute (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2017-09-06T15:14:56Z
dc.date.available2017-09-06T15:14:56Z
dc.date.issued2016-12
dc.description.abstractWe explore a version of black hole complementarity, where an approximate semiclassical effective field theory for interior infalling degrees of freedom emerges holo-graphically from an exact evolution of exterior degrees of freedom. The infalling degrees of freedom have a complementary description in terms of outgoing Hawking radiation and must eventually decohere with respect to the exterior Hamiltonian, leading to a breakdown of the semiclassical description for an infaller. Trace distance is used to quantify the difference between the complementary time evolutions, and to define a decoherence time. We propose a dictionary where the evolution with respect to the bulk effective Hamiltonian corresponds to mean field evolution in the holographic theory. In a particular model for the holographic theory, which exhibits fast scrambling, the decoherence time coincides with the scrambling time. The results support the hypothesis that decoherence of the infalling holographic state and disruptive bulk effects near the curvature singularity are comple-mentary descriptions of the same physics, which is an important step toward resolving the black hole information paradox.en_US
dc.description.sponsorshipThe research of D.L. was supported in part by DOE grant de-sc0010010. The research of L.T. was supported in part by Icelandic Research Fund grant 163422-051, the University of Iceland Research Fund, and the Swedish Research Council under contract 621-2014-5838.en_US
dc.description.versionPeer Revieweden_US
dc.identifier.citationLowe, D. A., & Thorlacius, L. (2016). A holographic model for black hole complementarity. Journal of High Energy Physics, 2016(12), 24. doi:10.1007/jhep12(2016)024en_US
dc.identifier.doi10.1007/JHEP12(2016)024
dc.identifier.issn1126-6708
dc.identifier.issn1029-8479 (eISSN)
dc.identifier.journalJournal of High Energy Physicsen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/382
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.relation.ispartofseriesJournal of High Energy Physics;2016(12)
dc.relation.urlhttp://link.springer.com/content/pdf/10.1007/JHEP12(2016)024.pdfen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAdS-CFT correspondenceen_US
dc.subjectBlack holesen_US
dc.subjectModels of quantum gravityen_US
dc.subjectSvarthol (stjörnufræði)en_US
dc.subjectSkammtafræðien_US
dc.titleA holographic model for black hole complementarityen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.licenseThis article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.en_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Nafn:
10.1007%2FJHEP12(2016)024.pdf
Stærð:
254.18 KB
Snið:
Adobe Portable Document Format
Description:
Publisher´s version (útgefin grein)

Undirflokkur