A scalable pipeline to create synthetic datasets from functional–structural plant models for deep learning

dc.contributor.authorHelmrich, Dirk Norbert
dc.contributor.authorBauer, Felix Maximilian
dc.contributor.authorGiraud, Mona
dc.contributor.authorSchnepf, Andrea
dc.contributor.authorGöbbert, Jens Henrik
dc.contributor.authorScharr, Hanno
dc.contributor.authorHvannberg, Ebba Þora
dc.contributor.authorRiedel, Morris
dc.contributor.departmentFaculty of Industrial Engineering, Mechanical Engineering and Computer Science
dc.date.accessioned2025-11-20T09:33:20Z
dc.date.available2025-11-20T09:33:20Z
dc.date.issued2024-01-01
dc.descriptionPublisher Copyright: © The Author(s) 2023.en
dc.description.abstractIn plant science, it is an established method to obtain structural parameters of crops using image analysis. In recent years, deep learning techniques have improved the underlying processes significantly. However, since data acquisition is time and resource consuming, reliable training data are currently limited. To overcome this bottleneck, synthetic data are a promising option for not only enabling a higher order of correctness by offering more training data but also for validation of results. However, the creation of synthetic data is complex and requires extensive knowledge in Computer Graphics, Visualization and High-Performance Computing. We address this by introducing Synavis, a framework that allows users to train networks on real-time generated data. We created a pipeline that integrates realistic plant structures, simulated by the functional–structural plant model framework CPlantBox, into the game engine Unreal Engine. For this purpose, we needed to extend CPlantBox by introducing a new leaf geometrization that results in realistic leafs. All parameterized geometries of the plant are directly provided by the plant model. In the Unreal Engine, it is possible to alter the environment. WebRTC enables the streaming of the final image composition, which, in turn, can then be directly used to train deep neural networks to increase parameter robustness, for further plant trait detection and validation of original parameters. We enable user-friendly ready-to-use pipelines, providing virtual plant experiment and field visualizations, a python-binding library to access synthetic data and a ready-to-run example to train models.en
dc.description.versionPeer revieweden
dc.format.extent29658212
dc.format.extent
dc.identifier.citationHelmrich, D N, Bauer, F M, Giraud, M, Schnepf, A, Göbbert, J H, Scharr, H, Hvannberg, E Þ & Riedel, M 2024, 'A scalable pipeline to create synthetic datasets from functional–structural plant models for deep learning', In Silico Plants, vol. 6, no. 1, diad022. https://doi.org/10.1093/insilicoplants/diad022en
dc.identifier.doi10.1093/insilicoplants/diad022
dc.identifier.issn2517-5025
dc.identifier.other219472064
dc.identifier.other5186692a-1acb-45d9-8cee-b55f0b2f0e44
dc.identifier.otherORCID: /0000-0003-1542-1062/work/147650201
dc.identifier.other85181920740
dc.identifier.urihttps://hdl.handle.net/20.500.11815/7503
dc.language.isoen
dc.relation.ispartofseriesIn Silico Plants; 6(1)en
dc.relation.urlhttps://doi.org/10.1093/insilicoplants/diad022en
dc.relation.urlhttps://www.scopus.com/pages/publications/85181920740en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.subjectComputer Visionen
dc.subjectFSPMen
dc.subjectHPCen
dc.subjectUnreal Engineen
dc.subjectVisualizationen
dc.subjectCrop Simulationen
dc.subjectComputer visionen
dc.subjectdeep learningen
dc.subjectvisualizationen
dc.subjectsynthetic dataen
dc.subjectAgronomy and Crop Scienceen
dc.subjectHuman-Computer Interactionen
dc.subjectComputer Vision and Pattern Recognitionen
dc.subjectBiochemistry, Genetics and Molecular Biology (miscellaneous)en
dc.subjectPlant Scienceen
dc.subjectModeling and Simulationen
dc.subjectSDG 9 - Industry, Innovation, and Infrastructureen
dc.titleA scalable pipeline to create synthetic datasets from functional–structural plant models for deep learningen
dc.type/dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/articleen

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Nafn:
diad022.pdf
Stærð:
28.28 MB
Snið:
Adobe Portable Document Format

Undirflokkur