Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributor.authorSafarian, Sahar
dc.contributor.authorEbrahimi Saryazdi, Seyed Mohammad
dc.contributor.authorUnnthorsson, Runar
dc.contributor.authorRichter, Christiaan
dc.contributor.departmentIðnaðarverkfræði-, vélaverkfræði- og tölvunarfræðideild (HÍ)en_US
dc.contributor.departmentFaculty of Industrial Eng., Mechanical Eng. and Computer Science (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2020-09-30T11:37:29Z
dc.date.available2020-09-30T11:37:29Z
dc.date.issued2020-12
dc.descriptionPost-print (lokagerð höfundar)en_US
dc.description.abstractThis study is a novel attempt in developing of an Artificial neural network (ANN) model integrated with a thermodynamic equilibrium approach for downdraft biomass gasification integrated power generation unit. The objective of the study is to predict the net output power from the systems derived from various kinds of biomass feedstocks under atmospheric pressure and various operating conditions. The input parameters used in the models are elemental analysis compositions (C, O, H, N and S), proximate analysis compositions (moisture, ash, volatile material and fixed carbon) and operating parameters (gasifier temperature and air to fuel ratio). The architecture of the model consisted of one input, one hidden and one output layer. 1032 simulated data from 86 different types of biomasses in various operating conditions were used to train the ANN. The developed ANN shows agreement with simulated data with absolute fraction of variance (R2) higher than 0.999 in the case of product power. Moreover, the relative influence of biomass characteristics and some specific operating parameters on output power are determined. Finally, to have a more detailed assessment, the variations of all input variables with respect to carbon content are compared and analyzed together. The suggested integrated ANN based model can be applied as a very useful tool for optimization and control of the process through the downdraft biomass gasification integrated with power generation unit.en_US
dc.description.sponsorshipThis paper was a part of the project funded by Icelandic Research Fund (IRF), (in Icelandic: Rannsoknasjodur) and the grant number is 196458-051.en_US
dc.description.versionPeer Revieweden_US
dc.format.extent118800en_US
dc.identifier.citationSafarian, S., Ebrahimi Saryazdi, S. M., Unnthorsson, R., & Richter, C. (2020). Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant. Energy, 213, 118800. doi:https://doi.org/10.1016/j.energy.2020.118800en_US
dc.identifier.doihttps://doi.org/10.1016/j.energy.2020.118800
dc.identifier.issn0360-5442
dc.identifier.journalEnergyen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/2084
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.relation.ispartofseriesEnergy;213
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectBiomass gasificationen_US
dc.subjectArtificial neural networken_US
dc.subjectPower productionen_US
dc.subjectDowndraften_US
dc.subjectSimulationen_US
dc.subjectLífmassien_US
dc.subjectLífrænn úrganguren_US
dc.subjectTauganeten_US
dc.subjectLíkönen_US
dc.subjectOrkugjafaren_US
dc.titleArtificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production planten_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.licenseCC BY-NC-NDen_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Hleð...
Thumbnail Image
Nafn:
Safarian et al. 2020 post-print.pdf
Stærð:
1.47 MB
Snið:
Adobe Portable Document Format
Description:
Post-print (lokagerð höfundar)

Undirflokkur