Multi-Scale Object Histogram Distance for LCCD Using Bi-Temporal Very-High-Resolution Remote Sensing Images

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributor.authorLv, ZhiYong
dc.contributor.authorLiu, TongFei
dc.contributor.authorBenediktsson, Jon Atli
dc.contributor.authorLei, Tao
dc.contributor.authorWan, YiLiang
dc.contributor.departmentRafmagns- og tölvuverkfræðideild (HÍ)en_US
dc.contributor.departmentFaculty of Electrical and Computer Engineering (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2019-10-01T13:19:55Z
dc.date.available2019-10-01T13:19:55Z
dc.date.issued2018-11-15
dc.descriptionPublisher's version (útgefin grein)en_US
dc.description.abstractTo improve the performance of land-cover change detection (LCCD) using remote sensing images, this study utilises spatial information in an adaptive and multi-scale manner. It proposes a novel multi-scale object histogram distance (MOHD) to measure the change magnitude between bi-temporal remote sensing images. Three major steps are related to the proposed MOHD. Firstly, multi-scale objects for the post-event image are extracted through a widely used algorithm called the fractional net evaluation approach. The pixels within a segmental object are taken to construct the pairwise frequency distribution histograms. An arithmetic frequency-mean feature is then defined from the red, green and blue band histogram. Secondly, bin-to-bin distance is adapted to measure the change magnitude between the pairwise objects of bi-temporal images. The change magnitude image (CMI) of the bi-temporal images can be generated through object-by-object. Finally, the classical binary method Otsu is used to divide the CMI to a binary change detection map. Experimental results based on two real datasets with different land-cover change scenes demonstrate the effectiveness of the proposed MOHD approach in detecting land-cover change compared with three widely used existing approaches.en_US
dc.description.sponsorshipThis work was supported by the National Science Foundation China (61701396), Open Fund of Key Laboratory of Geospatial Big Data Mining and Application, Hunan Province (No. 201802), the Natural Science Foundation of Shaan Xi Province (2017JQ4006), and Xizang Minzu University Youth Training program-Study on urban morphology expansion in Lhasa.en_US
dc.description.versionPeer Revieweden_US
dc.format.extent1809en_US
dc.identifier.citationLv, Z., Liu, T., Atli Benediktsson, J., Lei, T., & Wan, Y. (2018). Multi-Scale Object Histogram Distance for LCCD Using Bi-Temporal Very-High-Resolution Remote Sensing Images. Remote Sensing, 10(11), 1809. doi:10.3390/rs10111809en_US
dc.identifier.doi10.3390/rs10111809
dc.identifier.issn2072-4292
dc.identifier.journalRemote Sensingen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/1276
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.relation.ispartofseriesRemote Sensing;10(11)
dc.relation.urlhttp://www.mdpi.com/2072-4292/10/11/1809/pdfen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLand use and land coveren_US
dc.subjectRemote sensing applicationen_US
dc.subjectDetection algorithmen_US
dc.subjectHistogram distanceen_US
dc.subjectLandnýtingen_US
dc.subjectFjarkönnunen_US
dc.titleMulti-Scale Object Histogram Distance for LCCD Using Bi-Temporal Very-High-Resolution Remote Sensing Imagesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.licenseThis is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citeden_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Hleð...
Thumbnail Image
Nafn:
remotesensing-10-01809.pdf
Stærð:
6.01 MB
Snið:
Adobe Portable Document Format
Description:
Publisher´s version (útgefin grein)

Undirflokkur