High‐Temperature Deformation Behavior of Synthetic Polycrystalline Magnetite

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributor.authorTill, Jessica L
dc.contributor.authorRybacki, E.
dc.contributor.authorMorales, L.F.G.
dc.contributor.authorNaumann, M.
dc.contributor.departmentJarðvísindastofnun (HÍ)en_US
dc.contributor.departmentInstitute of Earth Sciences (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2019-08-12T11:32:34Z
dc.date.available2019-08-12T11:32:34Z
dc.date.issued2019-03
dc.descriptionPost-print (lokagerð höfundar)en_US
dc.description.abstractWe performed a series of deformation experiments on synthetic magnetite aggregates to characterize the high‐temperature rheological behavior of this mineral under nominally dry and hydrous conditions. Grain growth laws for magnetite were additionally determined from a series of static annealing tests. Synthetic magnetite aggregates were formed by hot isostatic pressing of fine‐grained magnetite powder at 1,100 °C temperature and 300‐MPa confining pressure for 20 hr, resulting in polycrystalline material with a mean grain size around 40 μm and containing 2–4% porosity. Samples were subsequently deformed to axial strains of up to 10% under constant load conditions at temperatures between 900 and 1,150 °C in a triaxial deformation apparatus under 300‐MPa confining pressure at applied stresses in the range of 8–385 MPa or in a uniaxial creep rig at atmospheric pressure with stresses of 1–15 MPa. The aggregates exhibit typical power‐law creep behavior with a mean stress exponent of 3 at high stresses, indicating a dislocation creep mechanism and a transition to near‐Newtonian creep with a mean stress exponent of 1.1 at lower stresses. The presence of water in the magnetite samples resulted in significantly enhanced static grain growth and strain rates. Best‐fit flow laws to the data indicate activation energies of around 460 and 310 kJ/mol for dislocation and diffusion creep of nominally dry magnetite, respectively. Based on the experimentally determined flow laws, magnetite is predicted to be weaker than most major silicate phases in relatively dry rocks such as oceanic gabbros during high‐temperature crustal deformation.en_US
dc.description.sponsorshipAlexander von Humboldt-Stiftungen_US
dc.format.extent2378-2394en_US
dc.identifier.citationTill, J. L., Rybacki, E., Morales, L. F. G., & Naumann, M. (2019). High-Temperature Deformation Behavior of Synthetic Polycrystalline Magnetite. Journal of Geophysical Research: Solid Earth, 124(3), 2378-2394. doi:10.1029/2018jb016903en_US
dc.identifier.doi10.1029/2018JB016903
dc.identifier.issn2169-9356
dc.identifier.issn2169-9313 (eISSN)
dc.identifier.journalJournal of Geophysical Research: Solid Earthen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/1208
dc.language.isoenen_US
dc.publisherAmerican Geophysical Union (AGU)en_US
dc.relation.ispartofseriesJournal of Geophysical Research: Solid Earth;124(3)
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFlow lawsen_US
dc.subjectMagnetiteen_US
dc.subjectExperimental deformationen_US
dc.subjectOxide mineralsen_US
dc.subjectCreep equationsen_US
dc.subjectBergfræðien_US
dc.subjectJarðefnien_US
dc.subjectJarðvísindien_US
dc.titleHigh‐Temperature Deformation Behavior of Synthetic Polycrystalline Magnetiteen_US
dc.typeinfo:eu-repo/semantics/articleen_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Hleð...
Thumbnail Image
Nafn:
Till et al 2019 JGR proof.pdf
Stærð:
2.25 MB
Snið:
Adobe Portable Document Format
Description:
Post-print (lokagerð höfundar)

Undirflokkur