Gap-Filling of MODIS Time Series Land Surface Temperature (LST) Products Using Singular Spectrum Analysis (SSA)

dc.contributorHáskóli Íslands (HÍ)en_US
dc.contributorUniversity of Iceland (UI)en_US
dc.contributor.authorGhafarian Malamiri, Hamid
dc.contributor.authorRousta, Iman
dc.contributor.authorOlafsson, Haraldur
dc.contributor.authorZare, Hadi
dc.contributor.authorZhang, Hao
dc.contributor.departmentRaunvísindadeild (HÍ)en_US
dc.contributor.departmentFaculty of Physical Sciences (UI)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.date.accessioned2020-01-24T13:44:31Z
dc.date.available2020-01-24T13:44:31Z
dc.date.issued2018-08-23
dc.descriptionPublisher's version (útgefin grein).en_US
dc.description.abstractLand surface temperature (LST) is a basic parameter in energy exchange between the land and the atmosphere, and is frequently used in many sciences such as climatology, hydrology, agriculture, ecology, etc. Time series of satellite LST data have usually deficient, missing, and unacceptable data caused by the presence of clouds in images, the presence of dust in the atmosphere, and sensor failure. In this study, the singular spectrum analysis (SSA) algorithm was used to resolve the problem of missing and outlier data caused by cloud cover. The region studied in the present research included an image frame of the Moderate Resolution Imaging Spectroradiometer (MODIS) with horizontal number 22 and vertical number 05 (h22v05). This image involved a large part of Iran, Turkmenistan, and the Caspian Sea. In this study, MODIS LST products (MOD11A1) were used during 2015 with approximately 1 km × 1 km spatial resolution and day/night LST data (daily temporal resolution). On average, the data have 36.37% gaps in each pixel profile with 730 day/night LST data. The results of the SSA algorithm in the reconstruction of LST images indicated a root mean square error (RMSE) of 2.95 Kelvin (K) between the original and reconstructed LST time series data in the study region. In general, the findings showed that the SSA algorithm using spatio-temporal interpolation can be effectively used to resolve the problem of missing data caused by cloud cover.en_US
dc.description.sponsorshipThis work was supported by Vedurfelagid, Rannis and Rannsoknastofa i vedurfraedi.en_US
dc.description.versionPeer Revieweden_US
dc.format.extent334en_US
dc.identifier.citationGhafarian Malamiri, H.R.; Rousta, I.; Olafsson, H.; Zare, H.; Zhang, H. Gap-Filling of MODIS Time Series Land Surface Temperature (LST) Products Using Singular Spectrum Analysis (SSA). Atmosphere 2018, 9, 334.en_US
dc.identifier.doi10.3390/atmos9090334
dc.identifier.issn2073-4433
dc.identifier.journalAtmosphereen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/1465
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.relation.ispartofseriesAtmosphere;9(9)
dc.relation.urlhttp://www.mdpi.com/2073-4433/9/9/334/pdfen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGap fillingen_US
dc.subjectM-SSAen_US
dc.subjectMonte Carlo testen_US
dc.subjectTime seriesen_US
dc.subjectMODIS LSTen_US
dc.subjectVeðurathuganiren_US
dc.subjectVeðurfarsrannsókniren_US
dc.subjectGervitunglen_US
dc.subjectHitamælingaren_US
dc.titleGap-Filling of MODIS Time Series Land Surface Temperature (LST) Products Using Singular Spectrum Analysis (SSA)en_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.licenseThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Hleð...
Thumbnail Image
Nafn:
atmosphere-09-00334-v2.pdf
Stærð:
8.14 MB
Snið:
Adobe Portable Document Format
Description:
Publisher´s version

Undirflokkur