Towards end-to-end (E2E) modelling in a consistent NPZD-F modelling framework (ECOSMO E2E_v1.0): application to the North Sea and Baltic Sea

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributor.authorDaewel, Ute
dc.contributor.authorSchrum, Corinna
dc.contributor.authorMacdonald, Jed
dc.contributor.departmentFaculty of Life and Environmental Sciences (UI)en_US
dc.contributor.departmentLíf- og umhverfisvísindadeild (HÍ)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2020-04-22T15:32:58Z
dc.date.available2020-04-22T15:32:58Z
dc.date.issued2019-05-06
dc.descriptionPublisher's version (útgefin grein)en_US
dc.description.abstractCoupled physical-biological models usually resolve only parts of the trophic food chain; hence, they run the risk of neglecting relevant ecosystem processes. Additionally, this imposes a closure term problem at the respective "ends" of the trophic levels considered. In this study, we aim to understand how the implementation of higher trophic levels in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model affects the simulated response of the ecosystem using a consistent NPZD-fish modelling approach (ECOSMO E2E) in the combined North Sea-Baltic Sea system. Utilising this approach, we addressed the above-mentioned closure term problem in lower trophic ecosystem modelling at a very low computational cost; thus, we provide an efficient method that requires very little data to obtain spatially and temporally dynamic zooplankton mortality. On the basis of the ECOSMO II coupled ecosystem model we implemented one functional group that represented fish and one group that represented macrobenthos in the 3-D model formulation. Both groups were linked to the lower trophic levels and to each other via predator-prey relationships, which allowed for the investigation of both bottom-up processes and top-down mechanisms in the trophic chain of the North Sea-Baltic Sea ecosystem. Model results for a 10-year-long simulation period (1980-1989) were analysed and discussed with respect to the observed patterns. To understand the impact of the newly implemented functional groups for the simulated ecosystem response, we compared the performance of the ECOSMO E2E to that of a respective truncated NPZD model (ECOSMO II) applied to the same time period. Additionally, we performed scenario tests to analyse the new role of the zooplankton mortality closure term in the truncated NPZD and the fish mortality term in the end-to-end model, which summarises the pressure imposed on the system by fisheries and mortality imposed by apex predators. We found that the model-simulated macrobenthos and fish spatial and seasonal patterns agree well with current system understanding. Considering a dynamic fish component in the ecosystem model resulted in slightly improved model performance with respect to the representation of spatial and temporal variations in nutrients, changes in modelled plankton seasonality, and nutrient profiles. Model sensitivity scenarios showed that changes in the zooplankton mortality parameter are transferred up and down the trophic chain with little attenuation of the signal, whereas major changes in fish mortality and fish biomass cascade down the food chain.en_US
dc.description.sponsorshipThis work is a contribution to the FP7 SEAS-ERA SEAMAN collaborative project financed by the Norwegian Research Council (grant no. NRC-227779/E40). We would like to thank Marie Maar for her constructive comments on an earlier version of the paper. Furthermore, we are grateful to an anonymous reviewer and Hagen Radtke, whose thoughtful comments helped to improve the paper.en_US
dc.description.versionPeer Revieweden_US
dc.format.extent1765-1789en_US
dc.identifier.citationDaewel, U., Schrum, C., and Macdonald, J. I.: Towards end-to-end (E2E) modelling in a consistent NPZD-F modelling framework (ECOSMO E2E_v1.0): application to the North Sea and Baltic Sea, Geosci. Model Dev., 12, 1765–1789, https://doi.org/10.5194/gmd-12-1765-2019, 2019.en_US
dc.identifier.doi10.5194/gmd-12-1765-2019
dc.identifier.issn1991-9603
dc.identifier.journalGeoscientific Model Developmenten_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/1744
dc.language.isoenen_US
dc.publisherCopernicus GmbHen_US
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/NRC-227779/E40en_US
dc.relation.ispartofseriesGeoscientific Model Development;12(5)
dc.relation.urlhttps://www.geosci-model-dev.net/12/1765/2019/gmd-12-1765-2019.pdfen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAtlantic Oceanen_US
dc.subjectBaltic Seaen_US
dc.subjectNorth Seaen_US
dc.subjectPhysical-biological modelsen_US
dc.subjectTrophic food chainen_US
dc.subjectEcosystemen_US
dc.subjectAtlantshafen_US
dc.subjectNorðursjóren_US
dc.subjectVistkerfien_US
dc.subjectLíkönen_US
dc.subjectFiskaren_US
dc.titleTowards end-to-end (E2E) modelling in a consistent NPZD-F modelling framework (ECOSMO E2E_v1.0): application to the North Sea and Baltic Seaen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.licenseThis work is distributed under the Creative Commons Attribution 4.0 License.en_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Hleð...
Thumbnail Image
Nafn:
gmd-12-1765-2019.pdf
Stærð:
8.56 MB
Snið:
Adobe Portable Document Format
Description:
Publisher´s version

Undirflokkur