Hyperspectral Feature Extraction Using Sparse and Smooth Low-Rank Analysis

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributor.authorRasti, Behnood
dc.contributor.authorGhamisi, Pedram
dc.contributor.authorUlfarsson, Magnus
dc.contributor.departmentRafmagns- og tölvuverkfræðideild (HÍ)en_US
dc.contributor.departmentFaculty of Electrical and Computer Engineering (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2020-10-13T12:56:42Z
dc.date.available2020-10-13T12:56:42Z
dc.date.issued2019-01-10
dc.descriptionPublisher's version (útgefin grein)en_US
dc.description.abstractIn this paper, we develop a hyperspectral feature extraction method called sparse and smooth low-rank analysis (SSLRA). First, we propose a new low-rank model for hyperspectral images (HSIs) where we decompose the HSI into smooth and sparse components. Then, these components are simultaneously estimated using a nonconvex constrained penalized cost function (CPCF). The proposed CPCF exploits total variation penalty, ℓ 1 penalty, and an orthogonality constraint. The total variation penalty is used to promote piecewise smoothness, and, therefore, it extracts spatial (local neighborhood) information. The ℓ 1 penalty encourages sparse and spatial structures. Additionally, we show that this new type of decomposition improves the classification of the HSIs. In the experiments, SSLRA was applied on the Houston (urban) and the Trento (rural) datasets. The extracted features were used as an input into a classifier (either support vector machines (SVM) or random forest (RF)) to produce the final classification map. The results confirm improvement in classification accuracy compared to the state-of-the-art feature extraction approaches.en_US
dc.description.sponsorshipThis research received no external funding. However, the contribution of Pedram Ghamisi is supported by the High Potential Program offered by Helmholtz-Zentrum Dresden-Rossendorf.en_US
dc.description.versionPeer Revieweden_US
dc.format.extent121en_US
dc.identifier.citationRasti, B.; Ghamisi, P.; Ulfarsson, M.O. Hyperspectral Feature Extraction Using Sparse and Smooth Low-Rank Analysis. Remote Sens. 2019, 11, 121.en_US
dc.identifier.doi10.3390/rs11020121
dc.identifier.issn2072-4292
dc.identifier.journalRemote Sensingen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/2112
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.relation.ispartofseriesRemote Sensing;11(2)
dc.relation.urlhttp://www.mdpi.com/2072-4292/11/2/121/pdfen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClassificationen_US
dc.subjectConstrained penalized cost functionen_US
dc.subjectFeature extractionen_US
dc.subjectHyperspectral imageen_US
dc.subjectLow-ranken_US
dc.subjectSmooth featuresen_US
dc.subjectSparse featuresen_US
dc.subjectTotal variationen_US
dc.subjectMyndgreining (upplýsingatækni)en_US
dc.subjectLitrófsgreiningen_US
dc.titleHyperspectral Feature Extraction Using Sparse and Smooth Low-Rank Analysisen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.licenseThis is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citeden_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Hleð...
Thumbnail Image
Nafn:
remotesensing-11-00121.pdf
Stærð:
3.21 MB
Snið:
Adobe Portable Document Format
Description:
Publisher´s version

Undirflokkur