Combining multiple data sets to unravel the spatiotemporal dynamics of a data-limited fish stock

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributor.authorPinto, Cecilia
dc.contributor.authorTravers-Trolet, Morgane
dc.contributor.authorMacdonald, Jed
dc.contributor.authorRivot, Etienne
dc.contributor.authorVermard, Youen
dc.contributor.departmentLíf- og umhverfisvísindadeild (HÍ)en_US
dc.contributor.departmentFaculty of Life and Environmental Sciences (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2020-10-06T14:15:38Z
dc.date.available2020-10-06T14:15:38Z
dc.date.issued2019-08
dc.descriptionPublisher's version (útgefin grein)en_US
dc.description.abstractThe biological status of many commercially exploited fishes remains unknown, mostly due to a lack of data necessary for their assessment. Investigating the spatiotemporal dynamics of such species can lead to new insights into population processes and foster a path towards improved spatial management decisions. Here, we focused on striped red mullet (Mullus surmuletus), a widespread yet data-limited species of high commercial importance. Aiming to quantify range dynamics in this data-poor scenario, we combined fishery-dependent and -independent data sets through a series of Bayesian mixed-effects models designed to capture monthly and seasonal occurrence patterns near the species’ northern range limit across 20 years. Combining multiple data sets allowed us to cover the entire distribution of the northern population of M. surmuletus, exploring dynamics at different spatiotemporal scales and identifying key environmental drivers (i.e., sea surface temperature, salinity) that shape occurrence patterns. Our results demonstrate that even when process and (or) observation uncertainty is high, or when data are sparse, if we combine multiple data sets within a hierarchical modelling framework, accurate and useful spatial predictions can still be made.en_US
dc.description.sponsorshipCP’s postdoc was funded by Ifremer and France Filière Peche. The authors thank Bruno Ernande for suggestions and comments that improved the work during the analysis. The authors also thank two anonymous reviewers for their comments, which helped to improve the manuscript.en_US
dc.description.versionPeer Revieweden_US
dc.format.extent1338-1349en_US
dc.identifier.citationPinto, C., et al. (2018). "Combining multiple data sets to unravel the spatiotemporal dynamics of a data-limited fish stock." Canadian Journal of Fisheries and Aquatic Sciences 76(8): 1338-1349.en_US
dc.identifier.doi10.1139/cjfas-2018-0149
dc.identifier.issn0706-652X
dc.identifier.issn1205-7533 (eISSN)
dc.identifier.journalCanadian Journal of Fisheries and Aquatic Sciencesen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/2089
dc.language.isoenen_US
dc.publisherCanadian Science Publishingen_US
dc.relation.ispartofseriesCanadian Journal of Fisheries and Aquatic Sciences;76(8)
dc.relation.urlhttps://www.nrcresearchpress.com/doi/10.1139/cjfas-2018-0149#.X24Az2j7SUlen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSjávarlíffræðien_US
dc.subjectFiskaren_US
dc.subjectVistkerfien_US
dc.titleCombining multiple data sets to unravel the spatiotemporal dynamics of a data-limited fish stocken_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.licenseThis work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.en_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Hleð...
Thumbnail Image
Nafn:
cjfas-2018-0149.pdf
Stærð:
6.7 MB
Snið:
Adobe Portable Document Format
Description:
Publisher´s version

Undirflokkur