Properties of BC6N monolayer derived by first-principle computation : Influences of interactions between dopant atoms on thermoelectric and optical properties

dc.contributor.authorAbdullah, Nzar Rauf
dc.contributor.authorAbdullah, Botan Jawdat
dc.contributor.authorTang, Chi-Shung
dc.contributor.authorGuðmundsson, Viðar
dc.contributor.departmentFaculty of Physical Sciences
dc.date.accessioned2025-11-20T08:29:24Z
dc.date.available2025-11-20T08:29:24Z
dc.date.issued2021-11-15
dc.description© 2021 Elsevier Ltd. All rights reserved.en
dc.description.abstractThe properties of graphene-like BC6N semiconductor are studied using density functional theory taking into account the attractive interaction between B and N atoms. In the presence of a strong attractive interaction between B and N dopant atoms, the electron charge distribution is highly localized along the B-N bonds, while for a weaker attractive interaction the electrons are delocalized along the entire hexagonal ring of BC6N. Furthermore, when both B and N atoms are doped at the same site of the hexagon, the breaking of the sub-lattice symmetry is low producing a small bandgap. In contrast, if the dopant atoms are at different sites, a high sub-lattice symmetry breaking is found leading to a large bandgap. The influences of electron localization/delocalization and the tunable bandgap on thermal behaviors such as the electronic thermal conductivity, the Seebeck coefficient, and the figure of merit, and optical properties such as the dielectric function, the excitation spectra, the refractive index, the electron energy loss spectra, the reflectivity, and the optical conductivity are presented. An enhancement with a red shift of the optical conductivity at low energy range is seen while a reduction at the high energy range is found indicating that the BC6N structure may be useful for optoelectronic devices in the low energy, visible range.en
dc.description.versionPeer revieweden
dc.format.extent1256910
dc.format.extent
dc.identifier.citationAbdullah, N R, Abdullah, B J, Tang, C-S & Guðmundsson, V 2021, 'Properties of BC 6 N monolayer derived by first-principle computation : Influences of interactions between dopant atoms on thermoelectric and optical properties', Materials Science in Semiconductor Processing, vol. 135, 106073. https://doi.org/10.1016/j.mssp.2021.106073en
dc.identifier.doi10.1016/j.mssp.2021.106073
dc.identifier.issn1369-8001
dc.identifier.other40571348
dc.identifier.other5bd53934-85ed-4514-8b3b-2fa0a50c6c7f
dc.identifier.other85109719691
dc.identifier.otherunpaywall: 10.1016/j.mssp.2021.106073
dc.identifier.urihttps://hdl.handle.net/20.500.11815/6439
dc.language.isoen
dc.relation.ispartofseriesMaterials Science in Semiconductor Processing; 135()en
dc.relation.urlhttps://www.scopus.com/pages/publications/85109719691en
dc.rightsinfo:eu-repo/semantics/restrictedAccessen
dc.subjectBCNen
dc.subjectDFTen
dc.subjectElectronic structureen
dc.subjectOptical propertiesen
dc.subjectThermoelectricen
dc.subjectGeneral Materials Scienceen
dc.subjectCondensed Matter Physicsen
dc.subjectMechanics of Materialsen
dc.subjectMechanical Engineeringen
dc.titleProperties of BC6N monolayer derived by first-principle computation : Influences of interactions between dopant atoms on thermoelectric and optical propertiesen
dc.type/dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/articleen

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Nafn:
2106.00430.pdf
Stærð:
1.2 MB
Snið:
Adobe Portable Document Format

Undirflokkur