Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributorHáskólinn í Reykjavíken_US
dc.contributorReykjavik Universityen_US
dc.contributor.authorBordbar, Aarash
dc.contributor.authorYurkovich, James T.
dc.contributor.authorPaglia, Giuseppe
dc.contributor.authorRolfsson, Óttar
dc.contributor.authorSigurjónsson, Ólafur E.
dc.contributor.authorPalsson, Bernhard O.
dc.contributor.departmentLæknadeild (HÍ)en_US
dc.contributor.departmentFaculty of Medicine (UI)en_US
dc.contributor.schoolHeilbrigðisvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Health Sciences (UI)en_US
dc.contributor.schoolTækni- og verkfræðideild (HR)is
dc.contributor.schoolSchool of Science and Engineering (RU)is
dc.date.accessioned2017-05-15T15:40:23Z
dc.date.available2017-05-15T15:40:23Z
dc.date.issued2017-04-07
dc.description.abstractThe increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time-course absolute quantitative metabolomics. This approach, termed “unsteady-state flux balance analysis” (uFBA), is applied to four cellular systems: three dynamic and one steady-state as a negative control. uFBA and FBA predictions are contrasted, and uFBA is found to be more accurate in predicting dynamic metabolic flux states for red blood cells, platelets, and Saccharomyces cerevisiae. Notably, only uFBA predicts that stored red blood cells metabolize TCA intermediates to regenerate important cofactors, such as ATP, NADH, and NADPH. These pathway usage predictions were subsequently validated through 13C isotopic labeling and metabolic flux analysis in stored red blood cells. Utilizing time-course metabolomics data, uFBA provides an accurate method to predict metabolic physiology at the cellular scale for dynamic systems.en_US
dc.description.sponsorshipThis work was supported by the National Heart Lung and Blood Institute (R43HL123074 and R43HL127843), the European Research Council (232816), and the U.S. Department of Energy (DE-SC0008701).en_US
dc.description.versionPeer Revieweden_US
dc.description.versionRitrýnt tímaritis
dc.format.extent46249en_US
dc.identifier.citationBordbar, A. et al. Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Sci. Rep. 7, 46249; doi: 10.1038/srep46249 (2017).en_US
dc.identifier.doi10.1038/srep46249
dc.identifier.issn2045-2322
dc.identifier.journalScientific Reportsen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/268
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.relation.ispartofseriesScientific Reports;7
dc.relation.urlhttps://www.nature.com/articles/srep46249en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBiochemical networksen_US
dc.subjectMetabolomicsen_US
dc.subjectMetabolic pathwaysen_US
dc.subjectLífefnafræðien_US
dc.subjectFrumulíffræðien_US
dc.subjectEfnaskiptien_US
dc.titleElucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomicsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.licenseCreative Commons Attribution 4.0 International License.en_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Hleð...
Thumbnail Image
Nafn:
srep46249.pdf
Stærð:
1.36 MB
Snið:
Adobe Portable Document Format
Description: