The effect of temperature and external field on transitions in elements of kagome spin ice

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributor.authorLiashko, Sergei Y
dc.contributor.authorJónsson, Hannes
dc.contributor.authorUzdin, Valery M
dc.contributor.departmentRaunvísindadeild (HÍ)en_US
dc.contributor.departmentFaculty of Physical Sciences (UI)en_US
dc.contributor.departmentRaunvísindastofnun (HÍ)en_US
dc.contributor.departmentScience Institute (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2017-12-20T13:23:50Z
dc.date.available2017-12-20T13:23:50Z
dc.date.issued2017-11-07
dc.description.abstractTransitions between magnetic states of one and two ring kagome spin ice elements consisting of 6 and 11 prolate magnetic islands are calculated and the lifetime of the ground states evaluated using harmonic transition state theory and the stationary state approximation. The calculated values are in close agreement with experimental lifetime measurements made by Farhan and co-workers (Farhan et al 2013 Nat. Phys. 9 375) when values of the parameters in the Hamiltonian are chosen to be best estimates for a single island, obtained from measurements and micromagnetic modeling. The effective pre-exponential factor in the Arrhenius rate law for the elementary steps turns out to be quite small, on the order of 109 s−1, three orders of magnitude smaller than has been assumed in previous analysis of the experimental data, while the effective activation energy is correspondingly lower than the previous estimate. The application of an external magnetic field is found to strongly affect the energy landscape of the system. Even a field of $4\,{\rm{mT}}$ can eliminate states that correspond to ground states in the absence of a field. The theoretical approach presented here and the close agreement found with experimental data demonstrates that the properties of spin ice systems can be calculated using the tools of rate theory and a Hamiltonian parametrized only from the properties of a single island.en_US
dc.description.sponsorshipThis work was supported by the Icelandic Research Fund, and the Academy of Finland (grant 278260).en_US
dc.description.versionPeer Revieweden_US
dc.format.extent113008en_US
dc.identifier.citationSergei, Y. L., Hannes, J., & Valery, M. U. (2017). The effect of temperature and external field on transitions in elements of kagome spin ice. New Journal of Physics, 19(11), 113008. doi:10.1088/1367-2630/aa8b96en_US
dc.identifier.doi10.1088/1367-2630/aa8b96
dc.identifier.issn1367-2630
dc.identifier.journalNew Journal of Physicsen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11815/488
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.relation.ispartofseriesNew Journal of Physics;19(11)
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEðlisfræðien_US
dc.subjectRafsegulfræðien_US
dc.subjectSegulmagnen_US
dc.titleThe effect of temperature and external field on transitions in elements of kagome spin iceen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dcterms.licenseOriginal content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.en_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Nafn:
Liashko_2017_New_J._Phys._19_113008.pdf
Stærð:
338.75 KB
Snið:
Adobe Portable Document Format
Description:

Undirflokkur