The use of Machine Learning (ML) techniques in the medical field is not a new occurrence and several papers describing research in that direction have been published. This research has helped in analysing medical images, creating responsive cardiovascular models, and predicting outcomes for medical conditions among many other applications. This Ph.D. aims to apply such ML techniques for the analysis of Acute Respiratory Distress Syndrome (ARDS) which is a severe condition that affects around 1 in 10.000 patients worldwide every year with life-threatening consequences. We employ previously developed mechanistic modelling approaches such as the “Nottingham Physiological Simulator,” through which better understanding of ARDS progression can be gleaned, and take advantage of the growing volume of medical datasets available for research (i.e., “big data”) and the advances in ML to develop, train, and optimise the modelling approaches. Additionally, the onset of the COVID-19 pandemic while this Ph.D. research was ongoing provided a similar application field to ARDS, and made further ML research in medical diagnosis applications possible. Finally, we leverage the available Modular Supercomputing Architecture (MSA) developed as part of the Dynamical Exascale Entry Platform~- Extreme Scale Technologies (DEEP-EST) EU Project to scale up and speed up the modelling processes. This Ph.D. Project is one element of the Smart Medical Information Technology for Healthcare (SMITH) project wherein the thesis research can be validated by clinical and medical experts (e.g. Uniklinik RWTH Aachen).
Notkun vélnámsaðferða (ML) í læknavísindum er ekki ný af nálinni og hafa nokkrar greinar verið birtar um rannsóknir á því sviði. Þessar rannsóknir hafa hjálpað til við að greina læknisfræðilegar myndir, búa til svörunarlíkön fyrir hjarta- og æðakerfi og spá fyrir um útkomu sjúkdóma meðal margra annarra notkunarmöguleika. Markmið þessarar doktorsrannsóknar er að beita slíkum ML aðferðum við greiningu á bráðu andnauðarheilkenni (ARDS), alvarlegan sjúkdóm sem hrjáir um 1 af hverjum 10.000 sjúklingum á heimsvísu á ári hverju með lífshættulegum afleiðingum. Til að framkvæma þessa greiningu notum við áður þróaðar aðferðir við líkanasmíði, s.s. „Nottingham Physiological Simulator“, sem nota má til að auka skilning á framvindu ARDS-sjúkdómsins. Við nýtum okkur vaxandi umfang læknisfræðilegra gagnasafna sem eru aðgengileg til rannsókna (þ.e. „stórgögn“), framfarir í vélnámi til að þróa, þjálfa og besta líkanaaðferðirnar. Þar að auki hófst COVID-19 faraldurinn þegar doktorsrannsóknin var í vinnslu, sem setti svipað svið fram og ARDS og gerði frekari rannsóknir á ML í læknisfræði mögulegar. Einnig nýtum við tiltæka einingaskipta högun ofurtölva, „Modular Supercomputing Architecture“ (MSA), sem er þróuð sem hluti af „Dynamical Exascale Entry Platform“ - Extreme Scale Technologies (DEEP-EST) verkefnisáætlun ESB til að kvarða og hraða líkanasmíðinni. Þetta doktorsverkefni er einn þáttur í SMITH-verkefninu (e. Smart Medical Information Technology for Healthcare) þar sem sérfræðingar í klíník og læknisfræði geta staðfest rannsóknina (t.d. Uniklinik RWTH Aachen).