Design and Evaluation of Parallel and Scalable Machine Learning Research in Biomedical Modelling Applications

dc.contributorHáskóli Íslandsen_US
dc.contributorUniversity of Icelanden_US
dc.contributorForschungszentrum Jülichen_US
dc.contributor.advisorMorris Riedelen_US
dc.contributor.authorBarakat, Chadi
dc.contributor.departmentIðnaðarverkfræði-, vélaverkfræði- og tölvunarfræðideild (HÍ)en_US
dc.contributor.departmentFaculty of Industrial Eng., Mechanical Eng. and Computer Science (UI)en_US
dc.contributor.schoolVerkfræði- og náttúruvísindasvið (HÍ)en_US
dc.contributor.schoolSchool of Engineering and Natural Sciences (UI)en_US
dc.date.accessioned2023-06-16T10:32:14Z
dc.date.available2023-06-16T10:32:14Z
dc.date.issued2023-06-19
dc.description.abstractThe use of Machine Learning (ML) techniques in the medical field is not a new occurrence and several papers describing research in that direction have been published. This research has helped in analysing medical images, creating responsive cardiovascular models, and predicting outcomes for medical conditions among many other applications. This Ph.D. aims to apply such ML techniques for the analysis of Acute Respiratory Distress Syndrome (ARDS) which is a severe condition that affects around 1 in 10.000 patients worldwide every year with life-threatening consequences. We employ previously developed mechanistic modelling approaches such as the “Nottingham Physiological Simulator,” through which better understanding of ARDS progression can be gleaned, and take advantage of the growing volume of medical datasets available for research (i.e., “big data”) and the advances in ML to develop, train, and optimise the modelling approaches. Additionally, the onset of the COVID-19 pandemic while this Ph.D. research was ongoing provided a similar application field to ARDS, and made further ML research in medical diagnosis applications possible. Finally, we leverage the available Modular Supercomputing Architecture (MSA) developed as part of the Dynamical Exascale Entry Platform~- Extreme Scale Technologies (DEEP-EST) EU Project to scale up and speed up the modelling processes. This Ph.D. Project is one element of the Smart Medical Information Technology for Healthcare (SMITH) project wherein the thesis research can be validated by clinical and medical experts (e.g. Uniklinik RWTH Aachen).en_US
dc.description.abstractNotkun vélnámsaðferða (ML) í læknavísindum er ekki ný af nálinni og hafa nokkrar greinar verið birtar um rannsóknir á því sviði. Þessar rannsóknir hafa hjálpað til við að greina læknisfræðilegar myndir, búa til svörunarlíkön fyrir hjarta- og æðakerfi og spá fyrir um útkomu sjúkdóma meðal margra annarra notkunarmöguleika. Markmið þessarar doktorsrannsóknar er að beita slíkum ML aðferðum við greiningu á bráðu andnauðarheilkenni (ARDS), alvarlegan sjúkdóm sem hrjáir um 1 af hverjum 10.000 sjúklingum á heimsvísu á ári hverju með lífshættulegum afleiðingum. Til að framkvæma þessa greiningu notum við áður þróaðar aðferðir við líkanasmíði, s.s. „Nottingham Physiological Simulator“, sem nota má til að auka skilning á framvindu ARDS-sjúkdómsins. Við nýtum okkur vaxandi umfang læknisfræðilegra gagnasafna sem eru aðgengileg til rannsókna (þ.e. „stórgögn“), framfarir í vélnámi til að þróa, þjálfa og besta líkanaaðferðirnar. Þar að auki hófst COVID-19 faraldurinn þegar doktorsrannsóknin var í vinnslu, sem setti svipað svið fram og ARDS og gerði frekari rannsóknir á ML í læknisfræði mögulegar. Einnig nýtum við tiltæka einingaskipta högun ofurtölva, „Modular Supercomputing Architecture“ (MSA), sem er þróuð sem hluti af „Dynamical Exascale Entry Platform“ - Extreme Scale Technologies (DEEP-EST) verkefnisáætlun ESB til að kvarða og hraða líkanasmíðinni. Þetta doktorsverkefni er einn þáttur í SMITH-verkefninu (e. Smart Medical Information Technology for Healthcare) þar sem sérfræðingar í klíník og læknisfræði geta staðfest rannsóknina (t.d. Uniklinik RWTH Aachen).en_US
dc.identifier.isbn978-9935-9697-9-8
dc.identifier.urihttps://hdl.handle.net/20.500.11815/4261
dc.language.isoenen_US
dc.publisherUniversity of Iceland, School of Engineering and Natural Sciences, Faculty of Industrial Eng., Mechanical Eng. and Computer Scienceen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectMachine learningen_US
dc.subjectData scienceen_US
dc.subjectARDSen_US
dc.subjectBiomedical Modellingen_US
dc.subjectCOVID-19en_US
dc.subjectDoktorsritgerðiren_US
dc.subjectVélrænt námen_US
dc.subjectLíkanagerðen_US
dc.subjectLífefnaverkfræðien_US
dc.titleDesign and Evaluation of Parallel and Scalable Machine Learning Research in Biomedical Modelling Applicationsen_US
dc.typeinfo:eu-repo/semantics/doctoralThesisen_US

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Nafn:
Chadi_phd_thesis_final.pdf
Stærð:
6.33 MB
Snið:
Adobe Portable Document Format
Description: