Opin vísindi

Why do RuO2 electrodes catalyze electrochemical CO2 reduction to methanol rather than methane or perhaps neither of those?

Skoða venjulega færslu

dc.contributor Háskóli Íslands
dc.contributor University of Iceland
dc.contributor.author Tayyebi, Ebrahim
dc.contributor.author Hussain, Javed
dc.contributor.author Skulason, Egill
dc.date.accessioned 2020-11-05T13:36:48Z
dc.date.available 2020-11-05T13:36:48Z
dc.date.issued 2020-09-21
dc.identifier.citation Tayyebi, E., et al. (2020). "Why do RuO2 electrodes catalyze electrochemical CO2 reduction to methanol rather than methane or perhaps neither of those?" Chemical Science 11(35): 9542-9553.
dc.identifier.issn 2041-6520
dc.identifier.issn 2041-6539 (eISSN)
dc.identifier.uri https://hdl.handle.net/20.500.11815/2170
dc.description Publisher's version (útgefin grein)
dc.description.abstract The electrochemical CO2reduction reaction (CO2RR) on RuO2and RuO2-based electrodes has been shown experimentally to produce high yields of methanol, formic acid and/or hydrogen while methane formation is not detected. This CO2RR selectivity on RuO2is in stark contrast to copper metal electrodes that produce methane and hydrogen in the highest yields whereas methanol is only formed in trace amounts. Density functional theory calculations on RuO2(110) where only adsorption free energies of intermediate species are considered,i.e.solvent effects and energy barriers are not included, predict however, that the overpotential and the potential limiting step for both methanol and methane are the same. In this work, we use bothab initiomolecular dynamics simulations at room temperature and total energy calculations to improve the model system and methodology by including both explicit solvation effects and calculations of proton-electron transfer energy barriers to elucidate the reaction mechanism towards several CO2RR products: methanol, methane, formic acid, CO and methanediol, as well as for the competing H2evolution. We observe a significant difference in energy barriers towards methane and methanol, where a substantially larger energy barrier is calculated towards methane formation than towards methanol formation, explaining why methanol has been detected experimentally but not methane. Furthermore, the calculations show why RuO2also catalyzes the CO2RR towards formic acid and not CO(g) and methanediol, in agreement with experimental results. However, our calculations predict RuO2to be much more selective towards H2formation than for the CO2RR at any applied potential. Only when a large overpotential of around −1 V is applied, can both formic acid and methanol be evolved, but low faradaic efficiency is predicted because of the more facile H2formation.
dc.description.sponsorship This work was supported by the Icelandic Research Fund (grant no. 196437-051), the Research Fund of the University of Iceland and the ‘Nordic Consortium for CO2 Conversion’ (NordForsk project no. 85378, http://site.uit.no/nordco2).
dc.format.extent 9542-9553
dc.language.iso en
dc.publisher Royal Society of Chemistry (RSC)
dc.relation.ispartofseries Chemical Science;11(35)
dc.rights info:eu-repo/semantics/openAccess
dc.subject General Chemistry
dc.subject CO2
dc.subject RuO2
dc.subject Electrochemical electrodes
dc.subject Koltvíoxíð
dc.subject Efnasambönd
dc.subject Rafeindafræði
dc.title Why do RuO2 electrodes catalyze electrochemical CO2 reduction to methanol rather than methane or perhaps neither of those?
dc.type info:eu-repo/semantics/article
dcterms.license This article is Open Access.All publication charges for this article have been paid for by the Royal Society of Chemistry
dc.description.version Peer Reviewed
dc.identifier.journal Chemical Science
dc.identifier.doi 10.1039/d0sc01882a
dc.relation.url http://pubs.rsc.org/en/content/articlepdf/2020/SC/D0SC01882A
dc.contributor.department Raunvísindastofnun (HÍ)
dc.contributor.department Science Institute (UI)
dc.contributor.department Iðnaðarverkfræði-, vélaverkfræði- og tölvunarfræðideild (HÍ)
dc.contributor.department Faculty of Industrial Eng., Mechanical Eng. and Computer Science (UI)
dc.contributor.school Verkfræði- og náttúruvísindasvið (HÍ)
dc.contributor.school School of Engineering and Natural Sciences (UI)


Skrár

Þetta verk birtist í eftirfarandi safni/söfnum:

Skoða venjulega færslu