Opin vísindi

Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations

Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations


Title: Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations
Author: Hjörleifsson, Jens G   orcid.org/0000-0002-0471-855X
Ásgeirsson, Bjarni   orcid.org/0000-0002-4275-2732
Date: 2016-07
Language: English
Scope: 755-765
University/Institute: Háskóli Íslands
University of Iceland
School: Verkfræði- og náttúruvísindasvið (HÍ)
School of Engineering and Natural Sciences (UI)
Department: Raunvísindadeild (HÍ)
Faculty of Physical Sciences (UI)
Raunvísindastofnun (HÍ)
Science Institute (UI)
Series: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics;1864(7)
ISSN: 1570-9639
DOI: 10.1016/j.bbapap.2016.03.016
Subject: Alkaline phosphatase; Dimer; Enzyme kinetics; Protein fluorescence; Phosphorescence; Cold adaption; Fosfatasar; Lífefnafræði; Fosfór; Sameindir; Ensím
URI: https://hdl.handle.net/20.500.11815/2009

Show full item record

Citation:

Hjörleifsson, J. G., & Ásgeirsson, B. (2016). Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations. Biochimica Et Biophysica Acta - Proteins and Proteomics, 1864(7), 755-765. doi:10.1016/j.bbapap.2016.03.016

Abstract:

Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn2+ and Mg2+ are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg2+ in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp → Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15 Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition.

Description:

Post-print (lokagerð höfundar)

Rights:

CC BY-NC-ND License

Files in this item

This item appears in the following Collection(s)