Generalizable Deep Learning-Based Sleep Staging Approach for Ambulatory Textile Electrode Headband Recordings

dc.contributor.authorRusanen, Matias
dc.contributor.authorHuttunen, Riku
dc.contributor.authorKorkalainen, Henri
dc.contributor.authorMyllymaa, Sami
dc.contributor.authorToyras, Juha
dc.contributor.authorMyllymaa, Katja
dc.contributor.authorSigurdardottir, Sigridur
dc.contributor.authorÓlafsdóttir, Kristín Anna
dc.contributor.authorLeppanen, Timo
dc.contributor.authorArnardóttir, Erna Sif
dc.contributor.authorKainulainen, Samu
dc.contributor.departmentDepartment of Engineering
dc.date.accessioned2025-11-17T08:18:51Z
dc.date.available2025-11-17T08:18:51Z
dc.date.issued2023-04-01
dc.descriptionPublisher Copyright: © 2013 IEEE.en
dc.description.abstractReliable, automated, and user-friendly solutions for the identification of sleep stages in home environment are needed in various clinical and scientific research settings. Previously we have shown that signals recorded with an easily applicable textile electrode headband (FocusBand, T 2 Green Pty Ltd) contain characteristics similar to the standard electrooculography (EOG, E1-M2). We hypothesize that the electroencephalographic (EEG) signals recorded using the textile electrode headband are similar enough with standard EOG in order to develop an automatic neural network-based sleep staging method that generalizes from diagnostic polysomnographic (PSG) data to ambulatory sleep recordings of textile electrode-based forehead EEG. Standard EOG signals together with manually annotated sleep stages from clinical PSG dataset (n = 876) were used to train, validate, and test a fully convolutional neural network (CNN). Furthermore, ambulatory sleep recordings including a standard set of gel-based electrodes and the textile electrode headband were conducted for 10 healthy volunteers at their homes to test the generalizability of the model. In the test set (n = 88) of the clinical dataset, the model's accuracy for 5-stage sleep stage classification was 80% (κ = 0.73) using only the single-channel EOG. The model generalized well for the headband-data, reaching 82% (κ = 0.75) overall sleep staging accuracy. In comparison, accuracy of the model was 87% (κ = 0.82) in home recordings using the standard EOG. In conclusion, the CNN model shows potential on automatic sleep staging of healthy individuals using a reusable electrode headband in a home environment.en
dc.description.versionPeer revieweden
dc.format.extent12
dc.format.extent4886167
dc.format.extent1869-1880
dc.identifier.citationRusanen, M, Huttunen, R, Korkalainen, H, Myllymaa, S, Toyras, J, Myllymaa, K, Sigurdardottir, S, Ólafsdóttir, K A, Leppanen, T, Arnardóttir, E S & Kainulainen, S 2023, 'Generalizable Deep Learning-Based Sleep Staging Approach for Ambulatory Textile Electrode Headband Recordings', IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 4, pp. 1869-1880. https://doi.org/10.1109/JBHI.2023.3240437en
dc.identifier.doi10.1109/JBHI.2023.3240437
dc.identifier.issn2168-2194
dc.identifier.other143493051
dc.identifier.other20e5d47b-0d70-4cd0-a0ab-fb58b6ba0d36
dc.identifier.other85148428952
dc.identifier.other37022272
dc.identifier.urihttps://hdl.handle.net/20.500.11815/6031
dc.language.isoen
dc.relation.ispartofseriesIEEE Journal of Biomedical and Health Informatics; 27(4)en
dc.relation.urlhttps://www.scopus.com/pages/publications/85148428952en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.subjectconvolutional neural networken
dc.subjectDeep learningen
dc.subjectelectrooculographyen
dc.subjectsleepen
dc.subjecttextile electrodesen
dc.subjectwearablesen
dc.subjectComputer Science Applicationsen
dc.subjectHealth Informaticsen
dc.subjectElectrical and Electronic Engineeringen
dc.subjectHealth Information Managementen
dc.titleGeneralizable Deep Learning-Based Sleep Staging Approach for Ambulatory Textile Electrode Headband Recordingsen
dc.type/dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/articleen

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Nafn:
Generalizable_Deep_Learning_Based_Sleep_Staging_Approach_for_Ambulatory_Textile_Electrode_Headband_Recordings.pdf
Stærð:
4.66 MB
Snið:
Adobe Portable Document Format