Innovative Diagnostic Approaches for Predicting Knee Cartilage Degeneration in Osteoarthritis Patients : A Radiomics-Based Study

dc.contributor.authorAngelone, Francesca
dc.contributor.authorCiliberti, Federica Kiyomi
dc.contributor.authorTobia, Giovanni Paolo
dc.contributor.authorJónsson, Halldór
dc.contributor.authorPonsiglione, Alfonso Maria
dc.contributor.authorGislason, Magnus Kjartan
dc.contributor.authorTortorella, Francesco
dc.contributor.authorAmato, Francesco
dc.contributor.authorGargiulo, Paolo
dc.contributor.departmentDepartment of Engineering
dc.date.accessioned2025-11-17T08:21:20Z
dc.date.available2025-11-17T08:21:20Z
dc.date.issued2024-09-12
dc.descriptionPublisher Copyright: © The Author(s) 2024.en
dc.description.abstractOsteoarthritis (OA) is a common joint disease affecting people worldwide, notably impacting quality of life due to joint pain and functional limitations. This study explores the potential of radiomics — quantitative image analysis combined with machine learning — to enhance knee OA diagnosis. Using a multimodal dataset of MRI and CT scans from 138 knees, radiomic features were extracted from cartilage segments. Machine learning algorithms were employed to classify degenerated and healthy knees based on radiomic features. Feature selection, guided by correlation and importance analyses, revealed texture and shape-related features as key predictors. Robustness analysis, assessing feature stability across segmentation variations, further refined feature selection. Results demonstrate high accuracy in knee OA classification using radiomics, showcasing its potential for early disease detection and personalized treatment approaches. This work contributes to advancing OA assessment and is part of the European SINPAIN project aimed at developing new OA therapies.en
dc.description.versionPeer revieweden
dc.format.extent5608465
dc.format.extent
dc.identifier.citationAngelone, F, Ciliberti, F K, Tobia, G P, Jónsson, H, Ponsiglione, A M, Gislason, M K, Tortorella, F, Amato, F & Gargiulo, P 2024, 'Innovative Diagnostic Approaches for Predicting Knee Cartilage Degeneration in Osteoarthritis Patients : A Radiomics-Based Study', Information Systems Frontiers, vol. 27, no. 1. https://doi.org/10.1007/s10796-024-10527-5en
dc.identifier.doi10.1007/s10796-024-10527-5
dc.identifier.issn1387-3326
dc.identifier.other229257652
dc.identifier.other05559471-8a3c-4f35-929e-a966f28dbf7f
dc.identifier.other85203696305
dc.identifier.urihttps://hdl.handle.net/20.500.11815/6066
dc.language.isoen
dc.relation.ispartofseriesInformation Systems Frontiers; 27(1)en
dc.relation.urlhttps://www.scopus.com/pages/publications/85203696305en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.subjectosteoarthritis, knee cartilage, imaging, segmentation, radiomics, machine learningen
dc.subjectTheoretical Computer Scienceen
dc.subjectSoftwareen
dc.subjectInformation Systemsen
dc.subjectComputer Networks and Communicationsen
dc.titleInnovative Diagnostic Approaches for Predicting Knee Cartilage Degeneration in Osteoarthritis Patients : A Radiomics-Based Studyen
dc.type/dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/articleen

Skrár

Original bundle

Niðurstöður 1 - 1 af 1
Nafn:
s10796-024-10527-5.pdf
Stærð:
5.35 MB
Snið:
Adobe Portable Document Format