Abstract: In this study, the potential of ultraviolet B (UV-B) radiation to alleviate the effects of pollutants in cigarette butt wastewater (CBW) was investigated using different Chlorella sorokiniana strains (F4, R1 and LG1). Microalgae were treated with UV-B (1.7 W m−2 ) for 3 days prior to their exposure to CBW and then incubated for 4 days in the absence or presence of UV-B. UV-B-untreated microalgae were used as the control. Comparative physiological responses, including photosynthetic pigments and non-enzymatic antioxidants, as well as nicotine and nicotyrine removal, were evaluated in 7-day cultures. UV-B treatments did not negatively impact algal chlorophyll or carotenoid production. UV-B acclimation was strain-dependent, correlating with native environment adaptations and genetic constitutions. UV-B as a pretreatment had long-term positive effects on non-enzymatic antioxidant capacity. However, LG1 needed more time to readjust the pro-oxidant/antioxidant balance, as it was the most UV-B-sensitive. Phenolic compounds played an important role in the antioxidant system response to UV-B, while flavonoids did not contribute to the total antioxidant capacity. Although cross-resistance between UV-B and CBW was observed in F4 and R1, only R1 showed nicotine/nicotyrine catabolism induction due to UV-B. Overall, the results suggest that UV-B activates defense pathways associated with resistance or tolerance to nicotine and nicotyrine.
In this study, the potential of ultraviolet B (UV-B) radiation to alleviate the effects of pollutants in cigarette butt wastewater (CBW) was investigated using different Chlorella sorokiniana strains (F4, R1 and LG1). Microalgae were treated with UV-B (1.7 W m−2) for 3 days prior to their exposure to CBW and then incubated for 4 days in the absence or presence of UV-B. UV-B-untreated microalgae were used as the control. Comparative physiological responses, including photosynthetic pigments and non-enzymatic antioxidants, as well as nicotine and nicotyrine removal, were evaluated in 7-day cultures. UV-B treatments did not negatively impact algal chlorophyll or carotenoid production. UV-B acclimation was strain-dependent, correlating with native environment adaptations and genetic constitutions. UV-B as a pretreatment had long-term positive effects on non-enzymatic antioxidant capacity. However, LG1 needed more time to readjust the pro-oxidant/antioxidant balance, as it was the most UV-B-sensitive. Phenolic compounds played an important role in the antioxidant system response to UV-B, while flavonoids did not contribute to the total antioxidant capacity. Although cross-resistance between UV-B and CBW was observed in F4 and R1, only R1 showed nicotine/nicotyrine catabolism induction due to UV-B. Overall, the results suggest that UV-B activates defense pathways associated with resistance or tolerance to nicotine and nicotyrine.