A holistic understanding of the underlying dynamics of sustainable energy system development and its effects on socio-economic and environmental aspects, in different national contexts, is necessary for improved decision making with regards to sustainable energy system planning. In this thesis, systems thinking approach (i.e. causal loop diagrams) is first applied to explore the general dynamics of sustainable energy system development, including the feedbacks and leverages that promote or prevent sustainable energy system development. Second, the emerging energy paradigm (i.e. sustainable energy) and questions related to the challenges arising from it are defined. An extensive model review, which assesses to what extent existing energy system models can provide answers or address the questions arising from the current energy paradigm is presented. This helps identify strengths and weaknesses of energy system models. One of the identified gaps in current energy system models is the simplified representation of the physical realities of renewable resources. This is particularly the case for geothermal resources. Therefore, the third step involves the development of a system dynamics model that captures the behaviour of geothermal resources when they are utilised for electricity production. This geothermal resource dynamics model can capture the effects of geothermal resource dynamics on capacity expansion, resource availability, production levels as well as development and unit production costs at a national systems level. Based on the findings that estimated costs significantly increase when geothermal resource dynamics are considered, while resource availability is also affected, the developed geothermal resource dynamics model assesses the effects of geothermal resource dynamics in Iceland and Kenya. For Kenya, an electricity system model that includes the dynamics of geothermal and hydropower is built. This model explores the effects of renewable resource dynamics (i.e. geothermal and hydropower) on electricity system planning, which is seen as a central element of sustainable energy system development in Kenya. For Iceland, the geothermal resource dynamics model was connected to the Icelandic energy and transport system model (UniSyD_IS). This enables investigating the importance of geothermal resource dynamics in the country’s transition to a low-carbon sustainable transport and energy system. Results show that despite the distinct contexts of the two countries (i.e. Global North and Global South), they face similar challenges arising from the character of renewable resource dynamics. In both cases, high electricity demand growth leads to unsustainable use of geothermal resources. This results in decreasing resource availability, thereby increasing the cost of geothermal electricity (development and unit production cost). The implications on sustainable (energy) system development for each country are distinct. This research shows that comprehending the implications of geothermal resource dynamics on sustainable energy system development in countries that already exploit or plan to exploit geothermal resources on a large scale is important. Additionally, this research draws attention to the need for understanding the context-specific dynamics of sustainable energy system development in more depth for achieving sustainable energy system development in different countries.
Heildrænn skilningur á þróun sjálfbærra orkukerfa og áhrif þeirra á umhverfi og samfélög er nauðsynlegur fyrir bætta ákvarðanatöku við skipulagningu slíkra kerfa. Í þessarri ritgerð er kerfishugsun beitt til að greina samspil mismunandi þátta og orsakatengingar í þróun sjálfbærra orkukerfa, m.a. gagnkvæm áhrif og möguleg inngrip sem ýta undir eða koma í veg fyrir sjálfbæra þróun orkukerfa. Í kjölfarið er ný hugmyndafræði um sjálfbær orkukerfi og tengdar spurningar rýnd og skilgreind. Þessi rýni felur í sér ítarlega skoðun á núverandi líkönum fyrir orkukerfi og mat á því hversu vel þau ná utan um þessa nýju hugmyndafræði. Þar með eru helstu styrkleikar og veikleikar núverandi líkana fyrir orkukerfi greindir. Einn veikleiki núverandi líkana er mikil einföldun á eðli endurnýjanlegra orkuauðlinda, þá sérstaklega fyrir jarðvarma. Því er kvikt kerfislíkan þróað sem tekur tillit til eðlis jarðvarma þegar hann er nýttur til rafmagnsframleiðslu. Þetta jarðvarmalíkan nær utan um eðli jarðvarmauðlinda á einfaldaðan hátt og þar með sýnir hugsanlega framleiðslugetu, áhrif nýtingar á auðlindina, og kostnað vegna rafmagnsframleiðslu á landsvísu. Niðurstöður þessa líkans sýna að kostnaður eykst verulega þegar hvikult eðli jarðvarmaauðlinda er tekið til greina. Einnig má greina áhrif á framleiðslugetu þessara auðlinda. Tvö viðlíka líkön eru þróuð frekar til að endurspegla aðstæður á Íslandi, annars vegar, og Kenía, hins vegar. Líkanið af íslensku jarðvarmaauðlindinni er tengt við UniSyD_IS sem er líkan af orku- og samgöngukerfi Íslands. Þar með er hægt að meta áhrif eðli jarðvarmaauðlindarinnar á orkuskipti til lág kolefna og sjálfbærra samgöngu- og orkukerfa. Líkanið af orkukerfi Kenía einblínir á rafmagnsframleiðslu og samspil notkunar jarðvarma og vatnsafls. Líkanið metur áhrif þessa samspils og eðli auðlindanna á skipulagningu raforkukerfa. En ein af undirstöðum þess að þróun orkukerfis Kenía stuðli að sjálfbærri þróun er talin góð skipulagning raforkukerfa. Niðurstöður þessarar rannsóknar sýna að þrátt fyrir ólíkar aðstæður í löndunum tveim, þá mæta þau svipuðum áskorunum vegna hvikuls eðlis endurnýjanlegra auðlinda. Í báðum tilvikum leiðir mikil eftirspurn eftir rafmagni til ósjálfbærrar nýtingar á jarðvarmaauðlindum. Afleiðing þess er minni framleiðslugetu og þar með hærra verðs og kostnaðar við framleiðslu á rafmagni úr jarðvarma. Þó eru afleiðingarnar fyrir sjálfbæra þróun orkukerfanna einnig mismunandi milli landanna tveggja. Þessi rannsókn sýnir að mikilvægt er að skilja eðli jarðvarmaauðlindarinnar, hvort sem nýting er komin skammt eða langt á veg. Nauðsynlegt er að taka til greina hvikult eðli jarðvarmaauðlinda við skipulagningu orkukerfa sem eiga að stuðla að sjálfbærri þróun. Einnig sýna þessar niðurstöður hversu miklu máli það skiptir að taka tillit til aðstæðna þegar unnið er að sjálfbærri þróun orkukerfa í mismunandi löndum.
Une compréhension holistique des dynamiques sous-jacentes du développement de systèmes énergétiques durables et de ses effets socioéconomiques et environnementaux dans différents contextes nationaux est nécessaire pour améliorer la prise de décision en matière de planification de systèmes énergétiques durables. Dans cette thèse, l’approche systémique (p.ex. des diagrammes de boucles causales) est premièrement appliquée à l’exploration des dynamiques générales du développement durable de systèmes énergétiques, incluant notamment les retours et leviers promouvant ou restreignant ce développement. Dans un deuxième temps, le paradigme énergétique émergent (p.ex. l’énergie durable) et les questions liées à ses enjeux sont définies. Une évaluation approfondie de la mesure dans laquelle les modèles de systèmes énergétiques existants peuvent fournir des réponses aux questions soulevées par le paradigme énergétique actuel est présentée. Cela permet d’identifier les forces et faiblesses des modèles de systèmes énergétiques. Une des lacunes identifiées dans ces modèles est la représentation simplifiée des réalités physiques des ressources renouvelables, particulièrement dans le cas de ressources géothermales. Par conséquent, la troisième étape consiste à développer un modèle de dynamique des systèmes qui appréhende l’évolution de ressources géothermales lorsqu’elles sont utilisées pour la production d’électricité. Ce modèle peut capturer les effets des dynamiques de ressources géothermales sur les capacités d’expansion, la disponibilité des ressources, le niveaux de production ainsi que le développement et coûts de production unitaires aux niveau de systèmes nationaux. Basé sur l’observation que les coûts estimés augmentent considérablement lorsque la dynamique des ressources géothermales est considérée tout en affectant leur disponibilités, le modèle de dynamique des ressources géothermales élaboré évalue les effets des dynamiques de ressources géothermiques en Islande et au Kenya. Pour le Kenya, un modèle de systèmes d’électricité qui inclut les dynamiques de la géothermie et de l’hydroélectricité est construit. Ce modèle explore les effets des dynamiques de ressources renouvelables (p.ex. la géothermie et l’hydroélectricité) sur la planification de systèmes d’électricité, perçue comme un élément central du développement de systèmes d’énergie durable au Kenya. Concernant l’Islande, le modèle de dynamiques de ressources géothermales a été relié au modèle de système d’énergie et de transports islandais (UniSyD_IS). Cela permet l’investigation de l’importance des dynamiques de ressources géothermales dans la transition du pays vers un système d’énergie et de transport durable à faible émissions de carbone. Les résultats montrent que malgré le contexte distinct des deux pays (p.ex. Nord-Sud), ils font face à des défis similaires qui découlent des caractéristiques des dynamiques de ressources renouvelables. Dans les deux cas, une forte demande d’électricité mène à une utilisation non-soutenable de ressources géothermiques. Cela résulte en une baisse de ressources disponibles, augmentant de ce fait le coût de l’électricité géothermique (de développement et de production individuelle). Les implications sur le développement de systèmes (énergétiques) durables pour les deux pays sont distinctes. Cette recherche montre que comprendre les implications des dynamiques de ressources géothermales sur le développement de systèmes énergétiques durables dans des pays qui exploitent, ou prévoient d’exploiter des ressources géothermiques à grande échelle est important. De plus, cette recherche souligne le besoin d’une compréhension plus poussée des dynamiques contextuelles du développement de systèmes énergétiques durables pour parvenir au développement de systèmes énergétiques renouvelables dans différents pays.