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We investigate possible interactions between neutrinos and massive scalar bosons via gϕν̄νϕ (or massive
vector bosons via gV ν̄γμνVμ) and explore the allowed parameter space of the coupling constant gϕ (or gV )
and the scalar (or vector) boson massmϕ (ormV ) by requiring that these secret neutrino interactions (SNIs)
should not spoil the success of big bang nucleosynthesis (BBN). Incorporating the SNIs into the evolution
of the early Universe in the BBN era, we numerically solve the Boltzmann equations and compare the
predictions for the abundances of light elements with observations. It turns out that the constraint on gϕ and
mϕ in the scalar-boson case is rather weak, due to a small number of degrees of freedom (d.o.f.). However,

in the vector-boson case, the most stringent bound on the coupling gV ≲ 6 × 10−10 at 95% confidence level
is obtained for mV ≃ 1 MeV, while the bound becomes much weaker gV ≲ 8 × 10−6 for smaller masses
mV ≲ 10−4 MeV. Moreover, we discuss in some detail how the SNIs affect the cosmological evolution and
the abundances of the lightest elements.
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I. INTRODUCTION

As one of the pillars of the standard model of cosmology,
big bang nucleosynthesis (BBN) opens a unique window to
the early Universe [1–6] and new physics beyond the
standard model of elementary particles [7–9]. Based on the
standard models of both cosmology and particle physics,
the theory of BBN itself essentially contains only one free
parameter, i.e., the baryon-to-photon density ratio, which
has been determined to be η≡ nb=nγ ¼ ð6.047� 0.074Þ ×
10−10 from the precision measurement of the cosmic micro-
wave background (CMB) by the Planck Collaboration [10].
The observed ratio between the primordial abundance of
deuterium and that of hydrogen D=Hjp ¼ ð2.53� 0.04Þ ×
10−5 [11–14], together with the primordial mass fraction of
4He, i.e., Yp ≡ ρð4HeÞ=ρb ¼ 0.2449� 0.0040, indicates
that 5.7 × 10−10 ≲ η≲ 6.7 × 10−10 at 95% confidence level

(C.L.) [15,16], which is remarkably consistent with the
CMB determination of the baryon density.1 Therefore, any
new physics leading to significant deviations from the
standard BBN predictions for the light element abundances
will receive restrictive constraints.
In this work, we investigate the observational constraints

from BBN on the secret neutrino interaction (SNI) with a
massive scalar or vector boson. More explicitly, we con-
sider the SNI only for the left-handed neutrino fields and
the relevant Lagrangian can be written as

LSNI ¼ gαβϕ ναLν
C
βLϕþ gαβV ναLγ

μνβLVμ þ H:c:; ð1Þ

where ϕ and Vμ are the fields for the scalar and vector
boson with massesmϕ andmV , respectively. For simplicity,

*huanggy@ihep.ac.cn
†tohlsson@kth.se
‡zhoush@ihep.ac.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1The BBN theory can also predict the primordial abundances
of 3He and 7Li. However, the only data on 3He are available for the
solar system and the high-metallicity regions in our Galaxy
and it is difficult to infer its primordial abundance [15]. On
the other hand, the observed relative abundance of lithium is
7Li=Hjp ¼ ð1.6� 0.3Þ × 10−10, showing a discrepancy in the
baryon density between the BBN and CMB estimates [9,17].
Since the lithium abundance remains an unresolved issue, it will
not be used to draw any constraints in this work.

PHYSICAL REVIEW D 97, 075009 (2018)

2470-0010=2018=97(7)=075009(12) 075009-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.075009&domain=pdf&date_stamp=2018-04-05
https://doi.org/10.1103/PhysRevD.97.075009
https://doi.org/10.1103/PhysRevD.97.075009
https://doi.org/10.1103/PhysRevD.97.075009
https://doi.org/10.1103/PhysRevD.97.075009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the coupling constants gαβϕ and gαβV are assumed to be both
flavor diagonal and universal for three neutrino flavors,
namely, gαβϕ ¼ gϕδαβ and gαβV ¼ gVδαβ. The main motiva-
tion for such an investigation is two-fold. First, the
interaction among neutrinos themselves has never been
directly tested in terrestrial experiments, since neutrinos
participate only in the neutral-current weak interaction in
the standard electroweak theory and there has not been an
attempt to collide two neutrino beams. In contrast, the early
Universe and the core-collapse supernovae, where the
neutrino number density is extremely high and the inter-
action among themselves is important, serve as ideal
places to constrain the SNI [18–22]. Second, the SNI is
expected in many particle-physics models, which have
been proposed to generate tiny neutrino masses [23–28]
or solve the potential problems associated with dark
matter [29].
Stringent constraints on the SNI with a massless or

massive scalar boson have been derived from observations
of the CMB and cosmological large-scale structure for-
mation [30–40], the supernova SN1987A [41–45], and
other experiments [46–51]. These experimental constraints
are also applicable with some modifications to the case of a
vector boson. To this end, a detailed study of the BBN
bounds on the SNI in both the scalar and vector cases is
lacking, except for a brief discussion in Ref. [52]. For this
reason, we now extend the previous work by incorporating
the SNI into the cosmological evolution during the
BBN era and examining its impact on the light element
abundances.
The remaining part of this work is organized as follows.

In Sec. II, we set up the general theoretical framework
to study the SNI in the BBN era. A general discussion
on how the presence of new particles and interactions
affects the standard BBN theory is given. Then, in
Sec. III, we numerically solve the Boltzmann equations
for the cosmological evolution and the nucleosynthesis
of light elements, where the BBN constraints on the
coupling constant and the mass are derived. Finally, in
Sec. IV, we summarize our main results and draw our
conclusions.

II. GENERAL FRAMEWORK

A. Simple arguments

As mentioned below Eq. (1), the coupling constant gϕ or
gV between neutrinos and the new particle ϕ or V is
assumed to be flavor conserving and universal. The
relaxation of such an assumption may lead to slight
differences. For instance, if ϕ or V is coupled exclusively
to νe and copiously produced after the decoupling of νμ and
ντ, the energy density of the decoupled νμ and ντ will not be
modified, rendering the constraint on the coupling constant
relatively weaker. For simplicity, we ignore the flavor
dependence of the SNI and treat neutrino flavors equally

in the evolution of our Universe.2 Through the interaction
given in Eq. (1), the scalar boson ϕ can be generated by the
inverse decay νþ ν̄ → ϕ and the neutrino-antineutrino
annihilation νþ ν̄ → ϕþ ϕ, for which the Feynman dia-
grams are shown in Fig. 1. For the vector boson V, we have
basically the same production processes. As pointed out in
Ref. [52], when ϕ or V becomes in thermal equilibrium
around the temperature T ≃ 1 MeV, it contributes to the
extra radiation represented in terms of ΔNeff ≡ Neff − 3,
where the effective number of neutrino species is defined as
Neff ≡ ðρr − ργÞ=ðρstdν =3Þ with ρr and ρstdν being the energy
density of all radiation and the neutrino energy density in
terms of the photon temperature Tγ in the limit of
instantaneous decoupling, respectively. With this defini-
tion, Neff in the standard case without SNI will be fixed to
three during the whole BBN era. In the scalar case with
mϕ ≲ 1 MeV, we have only one extra relativistic d.o.f.,
corresponding to ΔNeff ¼ 1=2 · 8=7 ≈ 0.57, whereas in the
vector case withmV ≲ 1 MeV, we have three helical states,
indicating ΔNeff ¼ 3=2 · 8=7 ≈ 1.71. It is worthwhile to
notice that the temperatures of photons and neutrinos
remain equal before the electron-positron annihilation at
T ≲ 0.511 MeV. Ifmϕ ormV is much larger than 1 MeV, ϕ
or V is nonrelativistic and its number density will be
suppressed by the Boltzmann factor e−mϕ=T or e−mV=T,
significantly reducing the contribution to ΔNeff . Then, we
require that the upper bound ΔNeff < 1 at 95% C.L. [57]
should be satisfied for T ≃ 1 MeV. Obviously, there are
essentially no constraints on gϕ and mϕ, whereas the
constraints on gV and mV could be restrictive.
In the above discussion, we have only considered the

situation in which V can be in thermal equilibrium at
T ≃ 1 MeV, but whether this is the case or not depends on
gV and mV . On the other hand, even if V cannot be brought
into thermal equilibrium, it still contributes to the total
energy density of our Universe. Therefore, the Boltzmann
equations for the distribution functions of both neutrinos
and V should be implemented in the latter case to calculate
ΔNeff . Before going into details of the Boltzmann equa-
tions, we make some comments on the constraints on gV
and mV by simple dimensional analysis:

(i) Around T ≃ 1 MeV, the Universe is certainly
radiation-dominated, so the Hubble expansion rate
is given by H ≈ 1.66

ffiffiffiffiffi
g�

p
T2=MPl, where g� ¼ 10.75

denotes the effective number of relativistic d.o.f.
and MPl ≃ 1.221 × 1019 GeV is the Planck mass.

2If neutrino flavor conversion and noninstantaneous decou-
pling of neutrinos are taken into account, the effective number
Neff of neutrino species (at the temperature far blow 1 MeV)
defined via the neutrino-to-photon ratio of energy densities
ρν=ργ ¼ Neff · 7=8 · ð4=11Þ4=3 will be shifted from Neff ¼ 3 to
Neff ¼ 3.045 [53–56]. Such a tiny difference will not be
important compared to the radical changes due to the new
physics under consideration.
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For V to be thermalized, we have to calculate its
production rate ΓV and demand ΓV≳H at T≃1MeV.

(ii) For a relatively large massmV ≲ 1 MeV, the inverse
decay νþ ν̄ → V could be quite efficient, since the
decay rate in the rest frame is proportional to both g2V
and mV . As an order-of-magnitude estimate, we
obtain ΓD

V ≈ g2VmV=ð12πÞ ·mV=ð3TÞ, where the last
factor is the Lorentz factor hEi=mV ≈ 3T=mV, aris-
ing from a boost to the comoving frame. When the
inverse decay dominates the production and brings
V into thermal equilibrium, i.e., ΓD

V ≳H, we arrive at

gV ≳ 2.2 × 10−10
�
1 MeV
mV

�
: ð2Þ

Consequently, if V is thermalized at T ≃ 1 MeV via
the inverse decay, the upper boundΔNeff < 1 can be
translated into gV ≲ 2.2 × 10−10ð1 MeV=mVÞ. This
is well consistent with the result from a more
detailed calculation in Ref. [52].

(iii) For an extremely small mass mV ≪ 1 MeV, the
inverse decay becomes inefficient and the annihila-
tion νþ ν̄ → V þ V will take over in thermalizing
V. Since the masses of neutrinos and V are suffi-
ciently small, the only relevant energy scale in
question is just T. Hence, ΓV can be estimated to
ΓA
V ≈ g4VT, which should be compared with H.

Requiring ΓA
V ≳H at T ≃ 1 MeV, we find

gV ≳ 4.6 × 10−6: ð3Þ
Similarly, the upper boundΔNeff < 1will restrict gV
into the region of gV ≲ 4.6 × 10−6. An accurate
calculation of the total energy density or ΔNeff
in the case of mV ≪ 1 MeV has not yet been
performed in the literature.

The exact calculation of the total energy density for an
arbitrary coupling constant gϕ (or gV) and an arbitrary mass
mϕ (or mV) calls for the implementation of Boltzmann
equations. First, both neutrinos and the new boson ϕ or V
could deviate from the thermal distributions, so the deter-
mination of ΔNeff requires numerical solutions to the true
distribution functions. Second, since the BBN takes place
for a wide range of temperature (e.g., from T ¼ 1 MeV to
T ¼ 0.01 MeV), a naive requirement for ΔNeff < 1 at
T ≃ 1 MeV oversimplifies the picture of relevant physics.

B. Boltzmann equations

In order to fully take into account the decay, annihi-
lation, and scattering processes shown in Fig. 1, we
need to solve a complete set of Boltzmann equations
for the distribution functions of neutrinos and the new
particle ϕ or V. The general theoretical framework
for the cosmological evolution can be found in a
number of excellent books on cosmology (see, e.g.,
Refs. [58–60]). Therefore, we only outline the strategy
for our computations.
First, the Hubble parameter HðtÞ≡ _aðtÞ=aðtÞ is gov-

erned by the Friedmann equation H2 ¼ 8πρ=ð3M2
PlÞ,

where aðtÞ is the scale factor and ρ is the total energy
density. The evolution of the energy density satisfies
_ρðtÞ ¼ −3Hðρþ PÞ, where both ρ and pressure P can
be solved for the given particle contents and their distri-
butions. As ρ ¼ ργ þ ρν þ ρe þ ρb þ ρϕ=V is still domi-
nated by radiation in the BBN era, we can safely ignore the
contribution ρb from baryons and count all those from
photons (γ), neutrinos (ν), electrons (e), and the new boson
ϕ (or V). This sets up the evolution of the cosmological
background.
Second, in the homogeneous and isotropic Universe

with the Friedmann–Lemaître–Robertson–Walker metric,

FIG. 1. The Feynman diagrams for the decay ϕ → νþ ν̄ (a), the annihilation νþ ν̄ → ϕþ ϕ (b1) and (b2), the elastic scattering
νþ ϕ → νþ ϕ (c1) and (c2) processes in the presence of SNI with a massive scalar boson ϕ. The corresponding diagrams in the vector
case can be obtained by replacing ϕ with V accordingly.
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the relevant distribution functions fiðjpij; tÞ for i ¼ ν, ν̄,
and ϕ (or V) fulfill the following Boltzmann equations [61]:

∂fiðjpij; tÞ
∂t −Hjpij

∂fiðjpij; tÞ
∂jpij

¼ Ci
Dðfν; fϕ=VÞ þCi

Aðfν; fϕ=VÞ þCi
Eðfν; fϕ=VÞ þCi

SM;

ð4Þ

where the quantities Ci
D, C

i
A, and C

i
E stand for the collision

terms of the decay, annihilation, and elastic scattering

processes, respectively. In fact, the last term Ci
SM in the

right-hand side of Eq. (4) collectively includes all the
relevant scattering processes for neutrinos in the standard
model, such as νν ↔ νν, νν̄ → νν̄, νν̄ ↔ eþe−, and
νe− → νe−, where the neutrino (antineutrino) flavor indices
have been suppressed. Since the neutrino interactions in the
standard model have been extensively studied in the
literature [62–64], we will not explicitly show them in
Eq. (4), but have indeed included them in our numerical
calculations. For the SNI part, assuming the scalar boson ϕ,
we have

Cϕ
D ¼ 1

2Eϕ

Z
dp̃νdp̃ν̄δ̃

4ðpÞ½fνfν̄ð1þ fϕÞ − fϕð1 − fνÞð1 − fν̄Þ�jM̄Dj2; ð5Þ

Cϕ
A ¼ 1

2Eϕ

Z
dp̃νdp̃ν̄dp̃0

ϕδ̃
4ðpÞ½fνfν̄ð1þ f0ϕÞð1þ fϕÞ − fϕf0ϕð1 − fνÞð1 − fν̄Þ�jM̄Aj2; ð6Þ

Cϕ
E ¼ 1

2Eϕ

Z
dp̃νdp̃0

νdp̃0
ϕδ̃

4ðpÞ½fνf0ϕð1þ fϕÞð1 − f0νÞ − f0νfϕð1þ f0ϕÞð1 − fνÞ�jM̄Ej2; ð7Þ

where dp̃i ≡ gid3pi=½ð2πÞ32Ei� with gi being the internal
d.o.f., pi ¼ ðEi;piÞ denotes the four-momentum, and
δ̃4ðpÞ≡ ð2πÞ4δ4ðPpÞ is the Dirac delta function for
four-momentum conservation. The matrix elements
squared jM̄Dj2, jM̄Aj2, and jM̄Ej2 are averaged over
the initial and final spins. For the annihilation process,
one should take care of the symmetric factors, arising from
the identical particles in the initial and final states, and the
changes of particle numbers in each specific process.
Furthermore, the contribution from the elastic scattering
between ν̄ and ϕ is not explicitly shown in Cϕ

E, but should
be added. In fact, for the Boltzmann equations of neutrinos
and antineutrinos, we have also included the standard
model processes, which establish a thermal contact
between the neutrino sector and the system of photons,
electrons, and baryons.
Finally, we come to the nuclear reactions for the

generation of light elements. At high temperatures, both
neutrons (n) and protons (p) are in thermal equilibrium, so
the neutron-to-proton ratio is given by n=p ¼ e−ðmn−mpÞ=T.
After the weak interaction freezes out and neutrinos
decouple from the thermal bath at T ≃ 1 MeV, we have
n=p ≈ 1=6, which will drop to 1=7 by the time of nuclear
reactions due to beta decays of free neutrons. The first
process is the formation of deuterium (D) via
pþ n → Dþ γ, which is at work efficiently after the
photo-disintegration rate is suppressed at T ≃ 0.1 MeV.
As neutrons will ultimately be integrated into the most
stable light element 4He, one can estimate its mass fraction
via Yp ¼ 2ðn=pÞ=ð1þ n=pÞ ≈ 0.25 [15]. Although Yp is
not quite sensitive to the nuclear reactions, the abundances

of D, 3He, and 7Li relative to that of H are of the order of
10−5 or even smaller and will be greatly affected by the
detailed reactions. In order to numerically calculate Yp

and D=Hjp, we implement the publicly available code
ALTERBBN of Ref. [65], which is actually based on the
original FORTRAN code first presented in Refs. [66,67] and
updated with the latest cross sections of relevant nuclear
reactions. Another well-known code PARTHENOPE has
also been widely used [68,69]. Note that the neutron
lifetime τn ¼ ð880.3� 1.1Þ s will be used in our calcu-
lation as an input value [16].

III. NUMERICAL RESULTS

A. Extra radiation

As a numerical support for the simple arguments given in
Sec. II A, we now attempt to compute the total energy
density by solving the Boltzmann equations for the dis-
tribution functions of neutrinos and the new particle ϕ or V
and to determine the extra radiation in terms of ΔNeff at
T ≃ 1 MeV. For the moment, the nucleosynthesis of light
elements is not initiated.
We start by specifying the initial conditions at a high

temperature T ¼ Tγ ¼ Tν ¼ 10 MeV. For later conven-
ience, aðtÞ is normalized to 1=Tγ and two dimensionless
parameters x≡ma and q≡ jpja are introduced, where m
can be an arbitrary mass scale and is set to 1 MeV in
practice. Photons, neutrinos, and electrons initially follow
the distributions in thermal equilibrium with zero chemical
potentials, while the initial abundance of ϕ or V is assumed
to be negligible. With the help of the two dimensionless

GUO-YUAN HUANG, TOMMY OHLSSON, and SHUN ZHOU PHYS. REV. D 97, 075009 (2018)

075009-4



parameters, we can recast the Boltzmann equations into the
following form

Hx
∂fiðq;xÞ

∂x ¼Ci
Dðfν;fϕ=VÞþCi

Aðfν;fϕ=VÞþCi
Eðfν;fϕ=VÞ;

ð8Þ

and obtain xdρ=dx ¼ −3ðρþ PÞ, where ρ is in general
composed of two parts: the thermal-bath sector ργ and ρe
and the neutrino sector ρν and ρϕ (or ρV). The former sector
can be described by the equilibrium distribution with Tγ .
For the latter sector, the energy density should be calculated
from the real distribution functions fν and fϕ (or fV). There
is essentially no difference between neutrinos and anti-
neutrinos, so ρν actually represents the energy density of
both. Then, it is straightforward to derive

x
dTγ

dx

dðργ þ ρeÞ
dTγ

¼ −3ðρþ PÞ − x
dρν
dx

− x
dρϕ=V
dx

: ð9Þ

Solving Eqs. (8) and (9) with H ¼ 8πρ=ð3M2
PlÞ, we obtain

the total energy density of radiation for any given values of
gϕ (or gV) and mϕ (or mV) and can extract the extra
radiation ΔNeff .
In Fig. 2, the numerical results are presented, where the

contours of ΔNeff have been plotted in the plane of mϕ and
gϕ in the scalar-boson case (left panel) and in the plane of
mV and gV in the vector-boson case (right panel).
Compared with the previous study in Ref. [52], the
parameter space has now been extended to the region of
much smaller masses, for which the annihilation processes
become dominant in the production of ϕ or V. Some
interesting features can be observed from Fig. 2. First, in
both plots, one can see that the contours turn out to be flat at
the small-mass end, e.g.,mϕ ormV ≈ 10−5 MeV, indicating

that the results of ΔNeff can be simply extrapolated to the
cases of even smaller masses. Second, at the high-mass end,
even if ϕ or V can be in thermal equilibrium, the Boltzmann
factor leads to a suppression of ΔNeff . This is why ΔNeff
decreases quickly when the mass increases. Third, in
between low and high masses, the product of gϕmϕ or
gVmV is nearly constant for a given ΔNeff , which can be
understood by the simple estimate in Eq. (2). However, the
maximum of ΔNeff in the scalar case is 0.57, when ϕ
is relativistic and the SNI can bring it into thermal
equilibrium with neutrinos. As a consequence, the BBN
bound ΔNeff ≲ 1 from Ref. [57] does not have any
constraining power on gϕ and mϕ.

B. Light element abundances

After having numerically computed the extra radiation,
we proceed with the real evolution of light element
abundances by combining the Boltzmann equations with
the ALTERBBN code [65]. Solving the Boltzmann equa-
tions numerically, we can obtain the necessary information
on the evolution of the cosmic background. Such an
information will be input to ALTERBBN as an alternative
model of cosmology, and thus, the light element abundan-
ces can be calculated at any instant of time or temperature.
As have already been observed in previous sections, ϕ

cannot contribute significantly to an extra radiation during
the BBN era. In order to illustrate the main effects of the
SNI in the BBN, we will concentrate on V and try to
capture the most important points by analyzing four
different cases of couplings and masses.
Case I: gV ¼ 10−4 and mV ¼ 10−5 MeV. In Fig. 3(a1),

we show the evolution of the comoving energy densities of
γ’s, ν’s, and V’s. In Fig. 3(a2), the neutron-to-proton ratio
n=p and the mass fraction of helium Yp are given. The
standard theory (dashed curves) is rather simple, which

FIG. 2. The contours of the extra radiation ΔNeff ≡ Neff − 3 at Tγ ¼ 1 MeV in the plane of mϕ and gϕ in the scalar-boson case (left
panel) and in the plane of mV and gV in the vector-boson case (right panel). The shaded regions with dashed or dotted-dashed lines are
excluded by weak decays of kaons and weak gauge bosons, which are reproduced from Ref. [51].
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means that the comoving energy density of γ’s increases
due to the heating from electron-positron annihilation,
while that of ν’s remains nearly unchanged, since ν’s are
almost decoupled from γ’s after 1 MeV. In contrast, in this
nonstandard case, the coupling constant gV ¼ 10−4 is so
strong that the V’s have been tightly coupled with ν’s even
before Tγ ¼ 10 MeV or a ¼ 0.1=MeV. The nonstandard
(solid blue curve) comoving energy density of γ’s is smaller
than the standard one (dashed blue curve), since the entropy
has been transferred into V’s that are abundantly produced.
The same behavior of the comoving energy density of ν’s
(green curves) is also found. However, one should notice
that the physical processes actually depend on Tγ or ργ
instead of aðtÞ. One can also observe that the energy
density ratio of the extra d.o.f. to γ’s by far exceeds that of
the standard case. Namely, the extra radiation in terms of
the effective number of neutrino species is Neff ¼ 4.71.
Consequently, this would accelerate the expansion of the
Universe, leading to an earlier decoupling of the weak

interaction that interchanges neutrons and protons and a
larger value of n=p would then remain for 4He synthesis.
This can been observed in Fig. 3(a2), where the asymptotic
value of Yp is 8.5% larger than the standard value. For
comparison, the 1σ error of the observed Yp is only 1.6%.
Therefore, this case should give a restrictive constraint.
Case II: gV ¼ 10−7 and mV ¼ 0.05 MeV. In Figs. 3(b1)

and 3(b2), the numerical results for this case are given.
Since gV ¼ 10−7 is now much smaller compared to that in
Case I, the comoving energy densities of γ’s (blue curves)
and ν’s (green curves) coincide with those of the standard
values at Tγ ¼ 10 MeV. Shortly later on, one can observe
sizable deviations due to the production of V ’s. Around
a ≈ 50=MeV or Tγ ≈ 0.02 MeV when the V’s remain in
thermal equilibrium with ν’s, the comoving energy density
ρV (red curves) is suppressed by the Boltzmann factor,
since mV ¼ 0.05 MeV > Tγ ≈ 0.02 MeV. The reduction
of the number density of V ’s is taking place via both the
decay V → νþ ν̄ and the annihilation V þ V → νþ ν̄

FIG. 3. The cosmological evolution of the comoving energy densities for neutrinos ν (green curves), photons γ (blue curves), and
vector bosons V (red curves) is presented in the left panel and that of the neutron-to-proton ratio n=p (brown curves) and the helium
mass fraction Yp (purple curves) in the right panel. The plots (a1) and (a2) are given for gV ¼ 10−4 andmV ¼ 10−5 MeV in Case I, while
(b1) and (b2) for gV ¼ 10−7 and mV ¼ 0.05 MeV in Case II. Note that the evolution of the comoving energy densities is plotted with
respect to the scale factor aðtÞ that has been normalized to 1=Tγ at very high temperatures. The dotted vertical lines at a ¼ 1=MeV or
Tγ ¼ 1 MeV in the plots (a1) and (b1) represent basically the epoch of neutrino decoupling. The dashed curves are for the standard
theory, while the solid curves for the nonstandard one. The baryon-to-photon ratio η takes on the value, which minimizes the χ2 function
for each case.
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processes. This is the reason why the comoving energy
density of ν’s takes over that of γ’s after these processes are
almost completed. Since the V’s are thermally populated
already by the time of neutrino decoupling at Tγ ¼ 1 MeV,
ΔNeff is the same as in Case I and its impact on n=p and Yp

is also quite similar.
Case III: gV ¼ 2 × 10−7 and mV ¼ 0.003 MeV. In

Figs. 4(a1) and 4(a2), the numerical results for this case
are displayed. From Fig. 4(a1), one can observe that the V’s
(red curves) are mostly generated after the neutrino
decoupling at Tγ ≈ 1 MeV, rendering the energy density
of γ’s (blue curves) to be nearly unchanged. In this case, the
extra radiation is found to be ΔNeff ≈ 0.5. However, Tν is
severely reduced by thermalizing the V’s. This picture
cannot be effectively described by ΔNeff. As indicated in
Fig. 4(a2), the increase of n=p and Yp is more significant
than those in the two previous cases, although ΔNeff is
smaller. The true reason is that the lower Tν would cause an
earlier decoupling of the weak interaction, implying a
larger value of n=p. In this case, we find that the final
Yp deviates from the standard value by 10%. This actually
results in the peak of Δχ2 on the edge of the excluded

region in Fig. 6, which will be discussed in the next
subsection.
Case IV: gV ¼ 10−6 and mV ¼ 2.5 MeV. In Figs. 4(b1)

and 4(b2), the numerical results for this case are shown.
Due to the large mass, the V’s are mainly produced via the
inverse decay νþ ν̄ → V and have been tightly coupled to
ν’s before Tγ ¼ 10 MeV. In this case, the extra radiation is
about ΔNeff ≈ 1.5. However, the light element abundances
seem to be unaffected, as indicated in Fig. 4(b2). This can
be interpreted as a cancellation between the effects of a higher
Tν and a larger expansion rate. One may extend the
discussion on this case to future works, since this might
provide a possible solution to the 7Li abundance problem [9],
which is, however, beyond the scope of the present work.
In Fig. 5, the evolutions of g� and Neff as functions of Tγ

have been displayed for different parameters in the vector-
boson case. As we have mentioned before, Neff has directly
been calculated from the true distribution functions of ν’s
and V’s, which themselves are found by solving the
relevant Boltzmann equations. Since Neff itself does evolve
with respect to temperature, it is not correct to just draw the
constraints on gV andmV by simply putting an upper bound

FIG. 4. The cosmological evolution of the comoving energy densities for neutrinos ν (green curves), photons γ (blue curves), and
vector bosons V (red curves) is presented in the left panel and that of the neutron-to-proton ratio n=p (brown curves) and the helium
mass fraction Yp (purple curves) in the right panel. The plots (a1) and (a2) are given for gV ¼ 2 × 10−7 and mV ¼ 0.003 MeV in Case
III, while (b1) and (b2) for gV ¼ 10−6 and mV ¼ 2.5 MeV in Case IV. The notations and other input parameters are the same
as for Fig. 3.
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on Neff at any instant of temperature or time. Although the
V’s contribute to Neff by at most 1.71 when they are
relativistic and in thermal equilibrium, Neff ≈ 5 can be
reached in Cases II and IV, as shown in the right panel of
Fig. 5. The main reason is that the V’s decay into ν’s, when
Tγ drops belowmV, and transfer their energies into ν’s. This
feature can also be observed from Figs. 3(b1) and 4(b1).
Since the V’s are nonrelativistic at this stage, their energy
densities will be diluted less significantly than those of
relativistic particles, such as ν’s. Therefore, the total energy
density in terms of Neff could go slightly beyond the value
4.71. For comparison, in the left panel of Fig. 5, we also
present g�ðTγÞ, which is defined through the radiation
energy density ρrðTγÞ ¼ π2g�ðTγÞT4

γ=30.
From the above discussion of the four different cases, it

is now clear how the light element abundances are affected
by the SNI with a massive scalar or vector boson. The
impact of a scalar boson is moderate, since it has a smaller
number of d.o.f. compared to a vector boson. In general, the
introduction of the SNI will produce additional radiation to
accelerate the expansion of the Universe. In addition, the
thermal contact between the new particle ϕ or V and
neutrinos will change Tν after neutrino decoupling. Both
effects will be important for the evolution of the light
element abundances. It should be noticed that the abun-
dance of deuterium is also modified when the SNI is
present, but the deviations from the standard theory
for Cases I–IV are within 1% when the χ2 function is
minimized with respect to η. Thus, the evolution of
deuterium is not included. Details on the minimization
of χ2 can be found in the next subsection, where more
discussions on the evolution of light element abundances
will be given.

C. Final constraints

The ultimate goal of this work is to constrain the
parameter space by the observations of the primordial
abundances of deuterium and helium. For this purpose, we
have to confront the theoretical predictions of these
quantities with the observed values. With the help of our
modified version of the ALTERBBN code, we are able to
calculate the light element abundances Yiðη; gs; msÞ given
the baryon-to-photon ratio η, the coupling constant gs, and
the mass ms. Here the subscript “s” denotes either ϕ for the
scalar boson or V for the vector boson. Apart from these
input parameters, we need to take into account the
theoretical errors on the nuclear reaction rates and the
neutron lifetime. This is important, since the observational
errors are currently comparable to the theoretical ones. To
this end, we adopt the simple method of linear error
propagation from Ref. [70] and define the χ2 function as

χ2 ¼
X
i;j

ðY th
i − Yex

i Þ½Sij�−1ðY th
j − Yex

j Þ; ð10Þ

where Sij ≡ ðσ2thÞij þ ðσ2exÞij is the covariance matrix of
squared errors and the indices i and j refer to the light
elements of our interest. We only consider the well-
measured abundances of deuterium and helium, i.e., i
and j run over D and 4He. In Eq. (10), Y th

i and Yex
i are

the theoretical predictions and the experimental values of
the abundances, respectively. In our calculations, the
theoretical errors ðσ2thÞij are estimated by using the method
of linear error propagation. For simplicity, we just consider
the errors of the twelve most relevant nuclear reactions
[70]. The theoretical errors on those nuclear reactions can

FIG. 5. The evolutions of g� (left panel) and Neff (right panel) with respect to Tγ for different representative parameters: Case I:
gV ¼ 10−4 and mV ¼ 10−5 MeV (purple curve), Case II: gV ¼ 10−7 and mV ¼ 0.05 MeV (green curve), Case III: gV ¼ 2 × 10−7 and
mV ¼ 0.003 MeV (blue curve), and Case IV: gV ¼ 10−6 and mV ¼ 2.5 MeV (red curve). The dashed curve (horizontal dashed line) in
the left (right) panel denotes the result in the standard case with instantaneous decoupling, while the vertical dotted line at Tγ ¼ 1 MeV
represents simply the epoch of neutrino decoupling.
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be found in Refs. [65,68,71], where the astrophysical S
factors and their corresponding uncertainties are quantified
as polynomial functions of temperature. One should be
referred to Refs. [72–82] for recent developments in this
aspect. On the other hand, the experimental errors are
assumed to be uncorrelated, namely, ðσ2exÞij ¼ δijσ

i
exσ

j
ex,

where the standard deviation σiex is assumed for the
corresponding individual observable. In Ref. [11], the
newly added HeIλ10830 infrared emission lines have been
incorporated together with the traditional visible lines from
the metal-poor ionized hydrogen regions of compact blue
galaxies to obtain Yp ¼ 0.2449� 0.0040. The relative
abundance of deuterium D=Hjp ¼ ð2.53� 0.04Þ × 10−5

is inferred from the observation of high-redshift interstellar
clouds in Ref. [12], in which all existing data have been
systematically studied.
Then, we are ready to compute χ2ðη; gs; msÞ by scanning

over the parameter space of η, gs, and ms. Since we are
interested in the BBN constraints on gs and ms, the values
of χ2ðη; gs; msÞ are minimized with respect to η in the range
from 10−9 to 10−10. Since the SNI may also affect the
formation of the CMB, the observational information on η
from the CMB data is not used for self-consistency. Since
the abundance of deuterium is very sensitive to η and the
one of 4He is not, minimizing χ2 with respect to η is
equivalent to minimizing the deuterium deviation with
respect to η. This is also why the deviations of the
abundance of deuterium from the standard values are quite
small in Figs. 3 and 4 when the minimization is performed.
In Fig. 6, the final results are presented, where the contours
and the density map of the χ2 function have been plotted for
the scalar-boson case (left panel) and the vector-boson case
(right panel). In general, the excluded regions are similar to
those in Fig. 2, which are basically described by simple
arguments of ΔNeff . Nevertheless, some special features in

Fig. 6 can only be explained after a full calculation of light
element abundances is accomplished.
In the left panel of Fig. 6, there is a gap between the small

scattered circles and the boundary of a large connected
region, corresponding to the contours of Δχ2 ¼ 1.8. The
reason is essentially the same as already mentioned in Case
III of the previous subsection. It is the freezing-in of ϕ
before or after the neutrino decoupling that makes the key
difference. In the former case, when ϕ is in thermal
equilibrium before the neutrino decoupling, a large value
of gϕ is required. Thus, Tγ and Tν must be changed
simultaneously such that their ratio is almost the same
as that of the standard case. Hence, the light abundances are
affected by the extra radiation, or equivalently, a large
expansion rate. However, in the latter case, when ϕ freezes
in after the neutrino decoupling, a smaller gϕ is needed.
Although the contribution to the extra radiation is small, the
production of ϕ’s from ν’s will reduce Tν, leading to an
earlier decoupling of the weak interaction. Therefore, for a
fixed mϕ, both a large coupling and a small one can give
rise to the same χ2 function, successfully explaining the
observed features. In the right panel of Fig. 6, the gap does
not show up, but one can notice a dark region along the
99% contour in the density map, which has the same origin
as the appearance of the smaller circles in the left panel.
With the above detailed calculations, we now make some

remarks on the flavor dependence of the SNI and discuss its
impact on the final observational constraints. If the media-
tor ϕ or V is only coupled to muon and tau neutrinos
(antineutrinos), the influence on BBN will be just the
modification of the total energy density, which can entirely
be represented by Neff. However, if the mediator is coupled
to the electron neutrinos (antineutrinos), the average energy
or temperature of νe (ν̄e) will be changed via the production
of the mediator, which will affect the total energy density
and directly modify the rates of weak interactions νe þ

FIG. 6. The contour plot and density map of the χ2 function in the scalar-boson case (left panel) and those in the vector-boson
case (right panel). Only the primordial mass fraction of helium Yp ¼ 0.2449� 0.0040 and the primordial abundance of deuterium
D=Hjp ¼ ð2.53� 0.04Þ × 10−5 have been used in the statistical analysis.
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n ↔ pþ e− and ν̄e þ p ↔ nþ eþ that are responsible for
the n=p ratio. As for the final constraints on the couplings
and the mediator masses, the main difference between the
electron and muon (or tau) neutrinos can be clearly
observed by comparing the numerical results shown in
Fig. 6 and those in Fig. 2. In the former case, the dark
regions along the indicated contours in Fig. 6 signify the
additional impact on the n=p ratio in the case of the SNI
for νe.

IV. SUMMARY AND CONCLUSIONS

We have performed a detailed study of the SNI in the
BBN era. In order to better understand the production and
the evolution of the involved new scalar or vector boson,
we have implemented the Boltzmann equations for the
distribution functions of neutrinos and this new particle.
Furthermore, these Boltzmann equations have been com-
bined with the ALTERBBN code to analyze the effects of the
SNI in the evolution of light element abundances. The
observed primordial abundances of deuterium and helium
have been used to constrain the coupling and the mass of
the new particle. Such a study is very helpful in exploring
the intrinsic properties of massive neutrinos, including the
origin of neutrino masses and the interactions among
neutrinos, and in constraining other new-physics scenarios
beyond the standard model.
In the scalar-boson case, it has been demonstrated that

the BBN bound on gϕ and mϕ is very weak. However, in
the vector-boson case, very stringent bounds on gV can
be obtained for a wide range of masses, i.e., 10−5 MeV≲
mV ≲ 5 MeV. The most stringent bound gV ≲ 6 × 10−10 at
95%C.L. is achieved formV ≃ 1 MeV.The bound on gV will
be significantly relaxed for much smaller masses, namely,
gV ≲ 8 × 10−6 for mV ≲ 10−4 MeV at the same C.L. The

BBN constraint is comparable to the supernova bound [45],
but weaker than the bounds drawn from decays of kaon and
weak gauge bosons in the low-mass region [51].
It is worthwhile to emphasize that the CMB data will be

very useful in constraining the SNI. For instance, although
the scalar boson ϕ can at most contribute an extra radiation
of ΔNeff ¼ 0.57, the CMB bound on the effective number
of neutrino species is Neff ¼ 3.14þ0.44

−0.43 at 95% C.L. [10]. In
addition, when the temperature drops below mϕ, the
Boltzmann suppression processes conserve the entropy,
but not the comoving energy density, enhancing the extra
radiation to ΔNeff ≈ 0.75 in the CMB epoch. Similar
arguments can be applied to the vector boson V as well.
However, it should be noted that the SNI in the CMB epoch
may alter the power spectrum of anisotropy via a tight
coupling [30–37,40]. Fortunately, both a larger Neff and a
stronger SNI enhance the power spectrum of anisotropy,
leading to more restrictive constraints.
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