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Abstract

This thesis considers the problem of detecting and estimating highly oscillatory signals from

noisy measurements. These signals are often referred to as chirps in the literature; they

are found everywhere in nature, and frequently arise in scientific and engineering problems.

Mathematically, they can be written in the general form A(t) exp(ıλ ϕ(t)), where λ is a

large constant base frequency, the phase ϕ(t) is time-varying, and the envelope A(t) is

slowly varying. Given a sequence of noisy measurements, we study two problems seperately:

1) the problem of testing whether or not there is a chirp hidden in the noisy data, and 2)

the problem of estimating this chirp from the data.

This thesis introduces novel, flexible and practical strategies for addressing these im-

portant nonparametric statistical problems. The main idea is to calculate correlations of

the data with a rich family of local templates in a first step, the multiscale chirplets, and

in a second step, search for meaningful aggregations or chains of chirplets which provide a

good global fit to the data. From a physical viewpoint, these chains correspond to realistic

signals since they model arbitrary chirps. From an algorithmic viewpoint, these chains are

identified as paths in a convenient graph. The key point is that this important underlying

graph structure allows to unleash very effective algorithms such as network flow algorithms

for finding those chains which optimize a near optimal trade-off between goodness of fit and

complexity.

Our estimation procedures provide provably near optimal performance over a wide range

of chirps and numerical experiments show that both our detection and estimation procedures

perform exceptionally well over a broad class of chirps. This thesis also introduces general

strategies for extracting signals of unknown duration in long streams of data when we have

no idea where these signals may be. The approach is leveraging testing methods designed

to detect the presence of signals with known time support.

Underlying our methods is a general abstraction which postulates an abstract statistical
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problem of detecting paths in graphs which have random variables attached to their vertices.

The formulation of this problem was inspired by our chirp detection methods and is of great

independent interest.
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Chapter 1

Introduction

This thesis considers the problem of detecting and estimating highly oscillatory signals from

noisy measurements. The statistical model assumes that the data is sampled uniformly and

is of the form

yk = αfk + zk, k = 0, 1, . . . , N − 1; (1.1)

where (fk) is an unknown vector with samples of a signal f(t) of interest, (zk) is a random

vector with mean zero and a known distribution, and α is an unknown scalar. We will study

two different statistical questions:

• Detection. Is there a signal hiding in the noise? More formally, given the data as in

(1.1), we would like to conduct a hypothesis test to decide between

H0 : α = 0 (data is only noise)

vs. the alternative

H1 : α 6= 0 (data is only noise).

• Estimation. How well can we recover the signal from the noise? Given data of the

form (1.1), we wish to recover f . The goal is to minimize the error of the estimation as

measured by a some loss function, which quantifies how far away the estimated signal

is from the truth.

We would like to stress that the object f is assumed to be unknown in the sense that it

does not depend upon a small number of parameters. In fact, we assume that f belongs

to an infinitely dimensional functional class. These problem settings are usually referred to
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as nonparametric testing and nonparametric estimation, as opposed to the classical finite-

parametric case. The study of these problems depends heavily on the class of unknown

signals one considers. The classical results for the nonparametric estimation problem assume

the objects are spatially homogeneous and obey smoothness conditions. The estimation

procedures often rely on local averages of the noisy measurements [75]. In the early 1990s,

Donoho and his collaborators established important links between nonparametric statistical

estimation, wavelets and modern harmonic analysis in general [35, 36]. This has initiated a

whole new industry of the exploration of new statistical methods based on recent advances

in applied harmonic analysis (for surveys on this topic, see [21, 53]). Theoretical studies for

nonparametric detection have, however, not reached the same level of maturity, and have

focused on similar smoothness classes (e.g., Sobolev spaces) as in the theory of nonparametric

estimation. See, for example, [50] and references therein.

The signals we wish to study, so-called chirps, are very different than those that have been

studied in nonparametric statistics in the past, and therefore call for new methodologies.

1.1 Chirps

The objects of our main focus, chirps, are oscillatory signals whose frequency can vary with

time, and are in fact parts of people’s daily life. English-speaking people should be familiar

with the everyday use of the word, as the word “chirp” is often used to signify the sound

made by a bird singing. Another notable example of a chirp is the sound when a fire engine

or a train passes by. The sound of the siren or the train whistle becomes higher in pitch

as the vehicles approach us, and lower as they move away. This is the result of the relative

motion of the sound source to the observer; the well-known Doppler effect we all read about

in science textbooks at an early age.

In mathematical terms, we can describe chirps as oscillatory signals whose frequency

changes with time and take the general form

f(t) = A(t) cos(λφ(t)); (1.2)

where t represents time, λ > 0, and the amplitude A and phase φ are time varying. For

now, we think about A being smooth and the oscillation degree λ as being large. That is,

A is an “envelope” in which cos(λφ(t)) oscillates.



3
There are plenty of examples of chirps in the nature. Besides the before mentioned

example of birds, another example is echolocation in some species of mammals. Bats and

dolphins have evolved sonar systems to locate food and navigate through skies and the ocean

[67, 73, 74, 79]. Some species of bats are known to emit chirps to help them navigate and

humpback whales are known to sing long and complex songs to communicate with other

whales. Better tools for analyzing the songs of humback whales could help us to learn more

about the habits of these species [78].

In science and technology chirps are used, for example, in remote sensing, radar, and

sonar. We can learn about velocity and location of moving objects by emitting electro-

magnetic waves towards them and recording the echo. As in the case of the train and the

siren, the Doppler effect implies that the received signal has a frequency evolving with time,

which is, for example, the principle behind automobile radars. Another example is that

doppler radar return from a small piece of ice floating in an ocean environment is chirp-

like [46]. In communication systems, information is transmitted by a transmitting chirps,

f(t) = cos(θ(t)), where the sender encodes information by phase and frequency modulation.

This is done by tuning θ(t) and, in turn, changing the rate of oscillation of f(t) [70].

The final example we wish to mention is gravitational waves in astrophysics, whose ex-

istence has been predicted by the theory of general relativity. These propagating waves are

disturbances in the curvature of space-time caused by the motion of matter. An example

of a source of gravitational waves is a system of two massive objects (e.g., black holes or

neutron stars) orbiting each other. General relativity predicts that this system loses energy

in the form of gravitational radiation, which causes the objects spiral in towards each other,

eventually merging in a violent event. These type of gravitational waves can be modeled as

chirps [4, 5]. There are observations that binary pulsar systems are losing energy at the rate

predicted by the theory of general relativity, providing strong evidence that gravitational

waves truly exist [47, 76]. Other than that, gravitational waves have not been verified directly

by experiments [80]. Enormous effort is being put today in verifying the existence of gravi-

tational waves directly by measurements based on interferometry. The biggest effort is the

Laser Interferometric Gravitational-wave Observatory (LIGO) [1]. Other gravitational wave

detectors are VIRGO and GEO in Europe, and TAMA in Japan. Nonparametric detection

and estimation strategies could provide a helpful tool for data exploration in gravitational

wave searches.
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1.2 Time-Frequency Analysis

The field of time-frequency analysis dates back to Dennis Gabor in 1946 [41] and Jean Ville in

1948 [82]. It considers the problem of developing mixed representations of a signal in terms

of a double sequence of elementary signals, each being localized in time and frequency.

Ville was motivated by music and took the example of a musical passage where a note

at certain frequency can only be heard when it is played. Although the musical signal

could be represented mathematically by Fourier analysis, such a representation can only tell

which notes have been played but cannot say at which time during the passage. Ville then

imagined that we could define an instantaneous frequency of a signal as a function of time,

which describes the structure or frequency – in the usual Fourier sense – of the signal at a

given instant. Gabor was the first to introduce time-frequency wavelets [41], which are now

called Gabor wavelets, and his idea was to divide an oscillatory signal, or a wave, into little

wavelets or time-frequency atoms. These are functions defined by

w(t) = g((t− t0)/s)eıωt, (1.3)

where g is a Gaussian window, s > 0, and t0, ω ∈ R; we can interpret ω as the average

frequency of the wavelet, and t0 − s and t0 + h as the start and finish of the “note” which it

plays. This defines a collection Ω of time-frequency atoms, and the idea is to write a signal

f as a series
∑

j αjwj , where αj is a scalar and wj ∈ Ω. Since Gabor’s proposal, other

collections Ω have been developed, such as Liénard’s time-frequency atoms, Malvar-Wilson

wavelets, and chirplets (see [52]). With all these collections to choose from, we can pose two

questions:

(i) To study a given class of signals, which collection should we choose?

(ii) For a given Ω, how should we find the "best" representation, i.e., a linear combination

of time-frequency atoms, of the signals of interest?

There is no simple answer to the first question, but the usual criterion is that the time-

frequency atoms should have the same “appearance” as the signal (or pieces of it) [52].

People have proposed several answers to the second question. For example, Coifman and

Wickerhauser’s best-basis algorithm [28] (1992), Mallat’s matching pursuit algorithm [58]

(1993), and the basis pursuit [27] (1998). At this point, we would like to mention that the
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statistical methods introduced in this thesis, could provide – as a side-product – a new answer

to the second question, at least in the case of finding good approximations of chirp signals.

This methodology is quite different from what these previous methods have proposed.

1.2.1 Instantaneous frequency

When listening to music we hear tones, or frequencies, changing with time. Ville’s idea was

to define the notion of instantaneous frequency of chirps, which could describe their rate of

oscillation at each instant. A cosine of the form

f(t) = a · cos(ω0t+ θ0) = a · cos(φ(t)),

where ω0, θ0, a ∈ R, has frequency ω0, which is the derivative of its phase φ(t). To generalize

this, we consider (1.2) and define its instantaneous frequency as

ω(t) = λφ′(t),

where we adapt the sign of φ(t) such that ω(t) > 0. This can be an ill-defined term, since

the pair (A, φ) in (1.2) is not necessarily unique; a simple example is to take A(t) = cos(ct),

c ∈ R, and switch the roles of A(t) and cos(λφ(t)) in (1.2). To get a unique representation,

we consider the analytic part fa of f , which is defined from the Fourier transform: f̂a(ω) =

2f̂(ω) if ω ≥ 0, and 0 otherwise. This complex signal can be represented uniquely in the

form

fa(t) = A(t) exp(iφ(t)),

where A(t) is a real-valued function with A(t) > 0 for all t. By the construction of fa, we

have a unique representation

f(t) = Re(fa) = A(t) exp(iφ(t)).

But this does not necessarily mean that φ′ really gives some information on how the frequency

content of f changes with time. We need conditions for the variations in the envelope A(t)

to not get in the way of determining the instantaneous frequency. Conditions where this
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holds can be described roughly as:

∣∣∣∣ A′(t)
A(t)φ′(t)

∣∣∣∣� 1,
∣∣∣∣ φ′′(t)(φ′(t))2

∣∣∣∣� 1. (1.4)

The first condition requires the envelope A(t) to change little on a scale given by the local

“period,” 1/φ′(t), and the second puts a bound on how fast φ′(t) can change in time. These

conditions have been used to define chirps in signal processing (see [25]). Now consider the

windowed Fourier transform defined by

Sf(u, ξ) = 〈f, gs,u,ξ〉, gs,u,ξ(t) = s−1/2g((t− u)/s)eiξt,

where g is a smooth symmetric window supported in [−1/2, 1/2]. If the conditions (1.4)

hold, |Sf(u, ξ)| would have large values along the curve ξ = ϕ′(u) in the “time-frequency”

plane (u, ξ), and decay away from it.

1.2.2 Chirplets

Multiscale chirplets were used in [23] in the context of chirp detection and are an ingredient

in the methods presented in this thesis. Prior to that that, Candés used windowed multiscale

chirplets in [20] for the estimation of chirps. However, the term “chirplet” was introduced

by Haykin and Mann, who wrote the first published reference to chirplets in [60] (see also

[12, 61]). They proposed a new transform, which in its simplest form for signals of dimension

one, is based on windowed chirplets

wλ(t) = g((t− t0)/s)eı(ωt+δt
2), λ = (s, t0, ω, δ), (1.5)

where g is a Gaussian window, s > 0, and t0, ω, δ ∈ R. They define the chirplet transform

of a signal f as the collection of inner products 〈f, wλ〉. These chirplets were motivated by

Gabor’s wave atoms, which are a of the same form as (1.5) but with the chirping parameter

δ equal to 0. More general sets of chirplets can be constructed by considering chirp atoms

having polynomial phase (e.g., piecewise cubic, piecewise quadratic, etc.), and even sinu-

soidally varying phase. What is new in the methodology we proposed in [20], and separates

our constructions from theirs, is the notion of the chirplet graph: the idea of modeling chirps

by looking at chirplets as nodes in a graph with directed edges connecting the vertices.
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1.3 The Detection Problem

1.3.1 Measures of performance

In hypothesis-testing problems there are two types of errors we can make:

1. False Detection: Decide that H1 is true when H0 is true; i.e., decide there is a signal

hiding in the data when the measurements are only noise.

2. False Dismissal: Decide that H0 is true when H1 is true; i.e., decide the data is only

noise when there is a signal hiding in it.

In the literature these are usually referred to as Type I and Type II errors, respectively.

Because the data is subject to stochastic noise, we measure the average performance of a

decision rule. That is, the probability of committing either of these errors.

The probability of Type I error is well-defined in our statistical problem (1.1) since the

distribution of the data under H0 is fully determined. On the other hand, the probability of

Type II error depends on the signal that is hiding in the noise and the signal level α. The

two main approaches in statistical decision theory to deal with this are the Minimax and

Bayesian paradigms, described in Section 9.2.

1.3.2 Current detection strategies

Since the problem of study involves nonparametric classes of chirps, we cannot assume that

we can approximate the family of signals with finite collections of the form {fθ : θ ∈ Θ}. But

if that was the case, a popular detection strategy based on the GLRT paradigm, so-called

“method of matched filters” [65], could be applied. In the case of additive Gaussian noise,

the decision would be based on the statistic

T ∗ = max
θ∈Θ

|〈y, fθ〉|2

‖fθ‖2
,

and T ∗ compared to a fixed threshold. The problem with this method is that unless the

set Θ is moderate, the cost of computing T ∗ could be enormous. Also, if we do not have

reliable parametric models for approximating the unknown waveforms, the method could

lack robustness.
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In the last decades, researchers in the field of time-frequency analysis have assembled a

great collection of tools. Various methods utilizing these tools have been proposed for detect-

ing chirps in noisy data. Not all of these methods are designed for detecting nonparametric

classes of chirps, and some are instead aimed at overcoming some of the computational

burden and robustness issues of matched filters. This can come at the cost of sacrificing

statistical sensitivity.

For example [51, 63] propose to look for ridges in the time-scale plane. First the contin-

uous time wavelet transform W (s, t), where s > 0 is scale and t is time, is computed. Then

the goal is to search for a curve ρ(s) along which the sum of
∫
|W (s, ρ(s))|2ds/s is maximum.

Searching the whole space of curves is virtually impossible, so the method is restricted to

parametric “power-law chirps” of the form f(t) = (t0 − t)α+ cos(2πFβ(t0 − t)β+1), where α

and β are unknown and Fβ is some constant. Thus, the method only considers a parametric

problem. It is more robust than the method of matched filters for this parametric class, but

instead sacrifices power and is less sensitive.

A similar method, based on searching for ridges in the time-frequency plane, is proposed

in [25]. This method focuses also on power-law chirps. It uses time-frequency distributions

to try localizing the unknown signal in the time-frequency plane. The choice of a suitable

time-frequency distribution depends on the parameters α and β for the power-law chirp.

For example, although the Wigner-Ville distribution is ideal for linear chirps, it works badly

for hyperbolic chirps (a hyperbolic chirp is a function of the form f(t) = cos(a/(b − t)),

for 0 ≤ t < β). In this case another time-frequency distribution needs to be chosen. The

interferences in the Wigner-Ville distribution are also problematic. When attempting to

suppress them using averaging methods, we sacrifice time-frequency resolution. This affects

the performance of the detection strategy [25].

To name a few nonparametric methods, we would like to mention [5]. It starts off by

getting a time-frequency portrait of the data using the Wigner-Ville distribution. This gives

rise to a time-frequency distribution ρ(t, ω) for discrete values of times t0 ≤ t ≤ t1 and

frequencies ω0 ≤ ω ≤ ω1. Then it considers the points (t, ω) as being “pixels” in a region

[t0, t1]× [ω0, ω1] and ρ(t, ω) the pixel level at (t, ω). Then it searches for ridges or edges in

this portrait, based on ideas that have been used for finding edges in noisy images. Those

pixels with levels exceeding a threshold are tagged as “ridge points” and the statistical test is

based on the length of the longest ridge. Because of the use of the Wigner-Ville distribution
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there will be interferences and even a clean signal would take nonzero values in regions which

have nothing to do with its frequency content. Again, one has to suppress the interferences

which causes loss in resolution and smearing of the true ridges. Another important issue is

that although the chirp may not be locally detectable, it could still be detectable by other

methods. This could mean that most of the true ridge points will not be tagged. An example

which might demonstrate this can be found in the numerical simulations for the GLRT in

the square lattice in Chapter 9.

Finally, while working on this project, we became aware of the recent and independent

work of Chassande-Mottin and Pai [26], who propose a detection method that is similar

in spirit to what we present in Chapter 3. However, we are neither aware of their method

having been extended to deal with long streams of data as we have done for our method

and is described in Chapter 4, nor do we know, whether any statistical theory has been

developed as we do here in Chapters 7 and 8. We discuss the connections and differences

between the two methods in Section 3.5.1.

1.4 The Estimation Problem

1.4.1 Measures of performance

To quantify the performance of an estimation procedure we need to choose a loss function.

For example, in image or speech processing we would wish to have a quantitative way of

measuring visual and audio degradation. Understandably, such perceptual measures can be

hard to model mathematically. Perhaps the most popular choice is to use a quadratic loss

function

l(f, f̂) =
1
N
‖f − f̂‖2`2 =

1
N

N−1∑
k=0

|fk − f̂k|2;

because of the 1/N factor, we can interpret this as the quadratic error per coordinate.

Besides making sense intuitively, this loss function is mathematically attractive for its sim-

plicity, nice properties, and geometric interpretation, and it has often proven to lead to

useful practical procedures. With a loss function in hand, we define the risk of the estima-

tor as E(l(f, f̂)), where the expectation is taken with respect to the distribution of the noise
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process (zk). We wish to recover f with a small mean-squared error (MSE)

MSE(f, f̂) := E

[
1
N

N∑
k=0

|fk − f̂k|2
]
. (1.6)

1.4.2 Current estimation strategies

Perhaps our benchmark method for the estimation of chirps is the procedure Candès intro-

duced in [20] for estimation of nonparametric classes of chirps. We include a description of

this in Section 5.6. Other possible methods that could be suitable for our setup are proce-

dures based on time-frequency dictionaries. For example thresholding in “best-basis” using

local cosines [83].

1.5 Detection vs. Estimation in the Nonparametric Case

As we discussed in the beginning of the introduction, the theory of nonparametric estimation

is fairly developed, and studies under this setting have generated a large literature over

the last few decades. Nonparametric testing problems have, however, not drawn as much

attention. This situation is very different from the classical parametric case, where these

problems where studied in parallel. In fact, for nonparametric setups as in (1.1), we often

have situations were for a certain range of signal strengths, the signals can be detected with

full power, while the accuracy of any estimator would be intolerable (see [50]).

1.6 The Goal

Our goal is to introduce new tools to solve applied statistical problems involving chirps.

Therefore we not only wish to find statistical procedures that have provable, very good

statistical performance (hopefully optimal or near-optimal) for the problems of interest, we

also aim at designing methods that are practical in the sense that we can use fast algorithms

to apply them to data. Satisfying both of these requirements simultaneously is challenging.

Our methodology is partly motivated by the idea of time-frequency representations.

Chirps with smoothly evolving instantaneous frequency have a simple local structure, and

in our case we will model them as having linear instantaneous frequency at a small enough

scale (i.e., as chirplets). At a global scale, our models are chains of chirplets which form a
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chirp with polygonal instantaneous frequency. We can think about the chirplets as vertices

in a graph with edges between chirplets whose instantaneous frequency is such that their

juncture does not differ by much. The statistical methods based on this framework search

for paths in the graph which give a good trade-off between goodness of fit and complexity.

The graph structure provides us both with the possibility of designing rapidly computable

methods, and some ground to do theoretical studies.

1.7 Influences

The main inspiration for our methods comes from [32]. It introduced a framework for

detecting curves in noisy images using chains of beamlets, which are line segments occupying

a range of dyadic locations, scales, and orientations. Another close relation is [11], where a

graph structure was used to detect high concentrations of points along smooth curves in a

background of uniform random points. As far as we know, ideas of this type can be traced

back to Sha’ashua and Ullman [72], who proposed to use a graph structure for searching for

salient structures in images. Our detection methods are different than those above and also

consider different types of data models.

1.8 Organization

The thesis can be divided into two parts. The first part introduces the methodology behind

our statistical procedures for detecting and estimating chirps. As a “proof-of-concept” that

the methods are powerful and practical, we present results from numerical experiments.

In the second part we develop statistical theory as an attempt to rigorously quantify, in a

precise mathematical sense, the performance of the methods. This leads us to the study of

an abstract statistical problem that is by itself of great interest and importance. A brief

description of the organization of the thesis is as follows:

• Part I: Methodology

– Chapter 2: Description of multiscale chirplets and the definition of the chirplet

graph

– Chapter 3: Introduction of methods for detecting chirps on a interval of data,

supplemented with numerical simulations
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– Chapter 4: Extension of the methods in Chapter 3 for detecting chirps of un-

known support in long data streams. Includes numerical simulations.

– Chapter 5: Estimation procedures for noisy chirps based on similar ideas as the

statistical tests in Chapter 3. Includes a short section with simulations.

• Part II: Theory

– Chapter 6: Mathematical description of a rich nonparametric class of chirps for

theoretical study. Investigations of approximation properties of chirplet paths for

this class. These results are needed for developing statistical theory in subsequent

chapters, but are also of independent interest.

– Chapter 7: Study of the theoretical performance of the estimator presented in

Chapter 5. Shows that it is optimal for estimating the chirps defined in Chapter

6 in the case when the regularity of the chirps is assumed to be known. In the

case when the regularity is unknown, we show that the method is near-optimal,

in the sense that it comes within a logarithmic factor of the ideal risk.

– Chapter 8: Study of statistical properties of the method presented in Chapter

3, giving conditions for guaranteed good performance

– Chapter 9: Study of a new abstract detection problem of detecting paths in

graphs. The formulation of the problem was motivated by the test procedure we

designed for chirp detection.

The appendices include supplementary material for the chapters, such as proofs of lemmas

and theorems, and information regarding the numerical experiments. Appendix F is a short

theoretical study on the problem of detecting sinusoids of unknown support and frequency

in long streams of data. It identifies the threshold of detectability for this problem.

1.9 Credits

Chapter 2 is based on joint work with Emmanuel Candés and was published in [23]. Sec-

tion 3.2 is included almost unchanged from [23]. It was written jointly with Emmanuel and

is mostly his prose based on a draft by me.

Chapter 3 is based on joint work with Emmanuel Candés and Philip Charlton and

published in [23]. Section 3.4 is included almost unchanged from [23] and written jointly
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with Emmanuel. It is Emmanuel’s prose that is included, while the simulations were run by

me. Emmanuel wrote Section 3.1.1 and Section 3.5, which are taken from [23]. Section 3.3

was written jointly by me and Emmanuel, but his writing is what is included. However,

Section 3.3.6 is recent work written by me and did not appear in the paper.

Chapter 4 is joint work with Emmanuel Candés and Philip Charlton. The material in

the chapter is being prepared for submission to a journal. Philip Charlton deserves the

credit for the gravitational wave signal model used in the simulations and my gratitude

for allowing me to use his text with the description of this model in Appendix E. He also

provided the code for generating these waveforms which was based on a Maple program,

supplied by Warren Anderson, for simulating binary black hole coalescence.

Chapter 9 is joint work with Emmanuel Candés, Ery Arias-Castro, and Ofer Zeitouni.

Parts of this work were published in [9]. In particular Section 9.6, which is included in the

thesis almost unchanged from the publication, was written jointly with Emmanuel and Ery.

Appendix B is joint work with Emmanuel Candés and written jointly with him. It was

sent to the editor of The Journal of Applied and Computational Harmonic Analysis with

our revision for [23] prior to its publication.
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Chapter 2

The Chirplet Graph

We start off by describing the main mathematical architecture behind the statistical proce-

dures that will be presented for chirp detection and estimation. First we define a dictionary

of multiscale chirp atoms called chirplets which provide good local approximations of a wide

range of chirps. Then we introduce the notion of a chirplet graph, which is the essential

ingredient of our methods, allowing us to build rapidly computable statistical estimators

and detectors, using efficient algorithms from the literature of network flow algorithms. The

graph is also a useful vehicle for establishing theoretical results, and makes the methods

quite general and extendable to other statistical problems.

2.1 Multiscale Chirplets

Although the chirps we wish to consider are too complex to be modeled by a simple para-

metric class of functions, their local structure might be simple enough to be captured well

by a simple parametric model. Our methods use a dictionary of multiscale chirplets, which

are oscillating functions, supported on dyadic time-segments of varying lengths and whose

phase varies quadratically with time. Such functions provide a good local approximation of

a wide range of chirps.

To be more specific, assume we work in the time interval [0, 1] and the data is evenly

sampled. Let I = [t0, t1] be a dyadic interval such that for any integer j ≥ 0,

I = [k2−j , (k + 1)2−j), k = 0, 1, . . . , 2j − 1.
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The multiscale chirplet dictionary is the family of functions defined by

cI,µ(t) := eı
(
aµ(t−t0)2/2+bµ(t−t0)

)
1I(t) |I|−1/2, (2.1)

where (aµ, bµ) ∈ Mj is a discrete collection of parameters; aµ is called the slope of the

chirplet and bµ is called the frequency offset of the chirplet. We will use the term scale

interchangeably for the time support of a chirplet, |I| = 2−j , or simply the the index j –

the meaning should be clear from the context. The parameters aµ and bµ may depend on

scale and any prior information we have about the chirps of interest. For example, the range

of the slope parameter aµ may depend on how rapidly the instantaneous frequency of the

chirps under consideration can change. Note that chirplets are normalized such that

‖cI,µ‖L2 = 1.

The chirplet dictionary has elements of various durations, locations, average frequencies and

chirp rates. It is convenient to think of chirplets as line segments in the time-frequency

plane, as a time-frequency portrait, such as the Wigner-Ville distribution, would reveal

(see, for example, [39, 57]). One can think of the “instantaneous frequency” of a chirplet as

being linear and equal to aµt+ bµ over its time duration. Figure 2.1 shows a diagrammatic

representation of two chirplets at different scales.

2.1.1 Discrete chirplets

For evenly sampled signals, discrete chirplets are the discrete-time waveforms

cI,µ[n] = cI,µ(n/N)/
√
N, (2.2)

with n = 0, . . . , N − 1. Note that these signals are normalized such that

‖cI,µ‖`2 = 1.
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Figure 2.1: A diagrammatic representation of two chirplets in the time-frequency plane
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For a fixed set of chirplet parameters (aµ, bµ) and a collection of chirplet scales, we define the

chirplet analysis or chirplet transform of a signal f of length N as the set of inner products 1

〈f, cI,µ〉 =
N−1∑
n=0

f [n]c∗I,µ[n],

with all the elements in the chirplet dictionary.

2.1.2 Recursive dyadic partitions

Partitions of the base interval [0, 1] into dyadic intervals are usually called Recursive Dyadic

Partitions (RDPs), and are quite classical in the literature of time-frequency analysis. We

give here a formal definition of RDPs and the special case of balanced RDPs which will be

used later in the thesis:

Definition 1. A recursive dyadic partition (RDP) is any partition P constructed according

to the following rules:

• P = {[0, 1]} is an RDP;

• Let P = {I1, . . . , Im} be an RDP. Then a partition obtained by splitting any interval

Ij ⊂ P into two adjacent dyadic interval and leaving the others the same is also an

RDP.

We say that P is a balanced RDP (BRDP) if it is an RDP such that any two adjacent

intervals I, I ′ ∈ P obey
max(|I|, |I ′|)
min(|I|, |I ′|)

≤ 2.

Villemoes uses the definition of BRDPs in [83] when introducing adapted bases of local

cosines which satisfy a uniform bound on their time-frequency concentration thanks to this

condition. He argues that this restriction on the allowed segmentations is not a big price

to pay, considering the sizes of two adjacent intervals in an RDP can only differ greatly at

special dyadic locations. Candés also uses BRDPs in [20] for his construction of libraries of

tight frames of multiscale chirplets (described in the Appendix). In our case BRDPs can also

be useful since they decrease the number of edges in the chirplet graph without sacrificing

much (or in some cases, any,) adaptivity for a wide range of chirps (see Section 6.2.1.1).
1Here z∗ stands for the complex conjugate of the complex number z.



18
2.2 The Chirplet Graph

The motivation behind the graph structure is to use a linear combination of chirplets to

model a chirp, f(t) = A(t) cos(λϕ(t)) or f(t) = A(t) exp(iλϕ(t)), by approximating its

instantaneous frequency λϕ′(t) by a piecewise linear curve in the time-frequency plane.

A chirplet graph G = (V,E) is a set of vertices (or nodes), V , and edges (or arcs), E.

Each vertex corresponds to a chirplet indexed by v = (I, µ); I being its time support and

µ = (aµ, bµ) being the index for the slope and frequency offset parameters for a chirplet as

described in (2.1). Restricting us to chirps with smooth phase and well-defined instantanous

frequency leads us to imposing some natural conditions for the edges in the chirplet graph

to satisfy:

1. Two chirplets can only be connected if they have adjacent supports in time.

2. Two chirplets are connected if the difference in frequency at the juncture is small.

3. Two chirplets are connected if the difference in their slopes is not too large.

The rules for connecting nodes in the chirplet graph are called connectivity constraints, or

connectivities. Figure 2.2 gives diagrammatic examples of some admissible and inadmissible

connectivities in the chirplet graph.

2.3 Discretization

For the sake of concreteness, we will describe a particular discretization of the chirplet

parameters and connectivities for the chirplet graph. A similar configuration will later

be used in some of our numerical experiments. In practice one might of course wish to

choose another discretization, based on the application and any prior knowledge about the

unknown signals. Some more rigorous guidelines for choosing configurations can be found

in later chapters of the thesis; in particular, in Chapter 6.

Let’s assume the signal is evenly sampled and of dyadic length N = 2J for some positive

integer J . Consider the portion [0, 1] × [−π, π] of the “time-frequency” plane. For each

dyadic interval I = [tI , tI′ ] = [k2−j , (k+ 1)2−j ], mark out two vertical lines at the endpoints

of I similar to what is done on Figures 2.2 and 2.3. Place ticks at spacing 2π/N along these

vertical lines. Then connect the ticks between the two vertical lines and let each such line
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Figure 2.2: Examples of connectivities in the chirplet graph. Each line segment represents the
instantaneous frequency of a chirplet. Chirplets may not be connected when the difference in offsets
and/or slopes is large.
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segment correspond to a chirplet; the position of the tick mark at the start of the line segment

is the parameter bµ in (2.1), and the slope is aµ. This builds a dictionary of chirplets. For

sake of simplicity, let’s suppose we only have to create such lines with a slope—in absolute

value—less or equal to 2π to “capture” the phase of the unknown chirp. By counting, the

number of slopes is about 2N · 2−j , and therefore the number Nj of chirplets per dyadic

interval obeys

Nj = # offsets ×# slopes ≈ N × 2N/2j .

At scale 2−j we have 2j dyadic intervals, and therefore about

2j Nj � 2N2

chirplets. Thus, considering a range of scales j ∈ {0, . . . , N − 1} we see that the size of this

chirplet dictionary is

O
(
N2 logN

)
.

It is clear that one can use the FFT to compute the chirplet coefficient table. For

example, with the above discretization, it is possible to compute all the coefficients against

chirplets “living” in the fixed interval [k2−j , (k + 1)2−j) in O(Nj log(N/2j)) flops so that

the computational complexity of the chirplet transform is O(N2 log2N). There are many

other possible discretizations and the experienced reader will also notice that, for regular

discretizations, the complexity will scale as O(MN logN), where here and below MN is the

number of chirplets in the dictionary. In summary, the computational cost is at most of the

order O(logN) per chirplet coefficient.
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Chapter 3

Detection of Chirps by Chirplet Path
Pursuit

This chapter considers the problem of detecting chirps from noisy measurements. Suppose

we have noisy sampled data

yk = α fk + zk, k = 1, . . . , N, (3.1)

where the unknown vector (fk) consists of sampled values fk = f(tk) of a signal of interest

f(t), t ∈ [0, 1] belonging to a class of functions F . (zk) is a zero-mean random sequence, not

necessarily i.i.d. but with a known distribution. Based on the observations (yk), one would

like to decide whether or not a signal is hiding in the noise; i.e., we would like to test the

null hypothesis

H0 : α = 0 (noise only)

against the alternative

H1 : α 6= 0 (signal is buried in noise).

It is important to emphasize that we assume that we may not be able to model the functions

from F by a parametric model depending upon a small number of parameters. This puts

us in the situation of nonparametric testing. Although we will be considering F as being a

set of chirps, the methodology we are about to present can be deployed to other detection

problems; such as detection of curves in two-dimensional data.
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3.1 Detection Statistics

We now describe the complete algorithm for searching for chirps through the data. To

explain our methodology, it might be best to first focus on the case of additive Gaussian

white noise

yi = αSi + zi, i = 1, . . . , N, zi i.i.d. N(0, σ2).

We wish to test H0 : α = 0 against H1 : α 6= 0. A general strategy for testing composite

hypotheses is the so-called Generalized Likelihood Ratio Test (GLRT). We suppose that the

set of alternatives is of the form λf where λ is a scalar and f belongs to a subset F of unit

vectors of RN , i.e., obeying ‖f‖ = 1 for all f ∈ F (unless specified otherwise, ‖ · ‖ is the

usual Euclidean norm). In other words, the alternative consists of multiples of a possibly

exponentially large set of candidate signals. In this setup, the GLRT takes the form

max
λ∈R,f∈F

L(λf ; y)
L(0; y)

, (3.2)

where L(λf ; y) is the likelihood of the data when the true mean vector is λf . In the case of

additive white noise, a simple calculation shows that the GLRT is proportional to

max
λ∈R,f∈F

e−‖y−λf‖
2/2σ2

= max
f∈F

e−‖y−〈y,f〉f‖
2/2σ2

,

since for a fixed f ∈ F , the likelihood is maximized for λ = 〈y, f〉. It then follows from

Pythagoras’ identity ‖y − 〈y, f〉f‖2 = ‖y‖2 − |〈y, f〉|2 so that the GLRT is equivalent to

finding the solution to

max
f∈F

|〈y, f〉|2,

and comparing this value with a threshold.

3.1.1 The Best Path statistic

Supplied with a chirplet graph, a reasonable strategy would be to consider the class of signals

which can be rewritten as a superposition of piecewise linear chirps

f(t) =
∑
v∈W

λvfv(t),
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where W is any path in the chirplet graph and (λv) is any family of scalars, and apply the

GLRT principle. In this setup, the GLRT is given by

max
W

max
(λv)

e−‖y−
P
v∈W λvfv‖2/2σ2

= max
W

max
(λv)

∏
v∈W

e−‖yv−λvfv‖
2/2σ2

,

where for each v = (I, µ), yv is the vector (yt)t∈I , i.e., the portion of y supported on the time

interval I. Adapting the calculations detailed above shows that the GLRT is then equivalent

to

max
W

∑
v∈W
|〈y, fv〉|2. (3.3)

In words, the GLRT simply finds the path in the chirplet graph which maximizes the sum

of squares of the empirical correlation coefficients. As a side remark, we note that the value of

(3.3) does not change if one adjusts phase offsets cµ, with fv(t) = |I|−1/2 ei(aµt
2/2+bµt+cµ)1I(t),

so that the phase
∑

I(
1
2aµt

2 + bµt + cµ)1I(t) is continuous. The situation for real-valued

signals is a little different and is discussed in Appendix A. In this case, imposing continuity

implies a substantially greater computational complexity without improving the detection.

A major problem with the approach (3.3) is that the GLRT will naively overfit the data.

By choosing paths with shorter chirplets, one can find chirplets with increased correlations

(one needs to match data on shorter intervals), and as a result the sum
∑

v∈W |〈y, fv〉|2 will

increase. In the limit of tiny chirplets, |〈y, fv〉|2 = ‖yv‖2 which gives

max
W

∑
v∈W
|〈y, fv〉|2 = ‖y‖2,

and one has a perfect fit! There is an analogy with model selection in multiple regression

where one improves the fit by increasing the number of predictors in the model. Just as in

model selection, one needs to adjust the goodness of fit with the complexity of the fit.

Let W be a fixed path of length |W |. Then under the null hypothesis,
∑

v∈W |〈y, fv〉|2

is distributed as a chi-squared random variable with |W | degrees of freedom. Thus for fixed

paths, we see that the value of the sum of squares along the path grows linearly with the

length of the path. In some sense, the same conclusion applies to the maximal path; i.e., the

value of the sum of squares along a path of a fixed size ` also grows approximately linearly

with `, with a constant of proportionality greater than 1. An exact quantitative statement

would be rather delicate to obtain, in part because of the inherent complexity of the chirplet
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graph, but also because it would need to depend on the special chirplet discretization. We

refer the reader to [9].

The above analysis suggests taking a test statistic of the form

Z∗ = max
W

∑
v∈W |〈y, fv〉|2

|W |
, (3.4)

which may be seen as a perhaps unusual trade-off between the goodness of fit and the

complexity of the fit. This is of course motivated by our heuristic argument, which suggests

that under the null hypothesis, the value of the best path of length `, the quantity

T ∗` := max
|W |≤`

∑
v∈W
|〈y, fv〉|2, (3.5)

grows linearly with `, and is well concentrated around its mean by standard large deviation

inequalities. In other words, with Z∗` := T ∗` /`, one would expect Z∗` to be about constant

under H0, at least for ` sufficiently large. This would imply that if we ignored paths of

small length, one would expect—owing to sharp concentration—Z∗ = max` Z∗` to be about

constant under H0. Therefore, a possible decision rule might be to reject H0 if Z∗ is large.

Numerical simulations confirm that under the null, T ∗` grows linearly with `, but they

also show—as expected—deviations for small values of ` (see Figure 3.1). For example, with

the discretization discussed in Section 2.3, EZ∗` seems to be decreasing with `. With this

discretization, Z∗ is also almost all the time attained with paths of length 1 (one single

chirplet) so that Z∗ is almost always equal to Z∗1 . If we were to set a threshold based on the

quantile of the null distribution of Z∗ which basically coincides with that of Z∗1 , we would

lose some power to detect the alternative. Suppose, indeed, that there is signal. Then the

signal may be strong enough so that the observed value of Z∗` for some ` may very well

exceed the appropriate quantile of its null distribution, hence providing evidence that there

is signal, but too weak for the observed Z∗ to exceed the appropriate quantile of its null

distribution. Hence, we would have a situation where we could, in principle, detect the

signal, but would fail to do so because we are using a low-power test statistic which is not

looking in the right place.

A more powerful approach in order to gather evidence against the null consists of looking

at the Z∗` s for many different values of `, and finding one which is unusually large. Because
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Figure 3.1: Null distribution of Z∗` for values of ` equal to 1, 2, 4, 8, 16. The mean and standard
deviation are decreasing with `.

we are now looking at many test statistics simultaneously, we need a multiple comparison

procedure which would deal with issues arising in similar situations, e.g., in multiple hypoth-

esis testing [84]. For example, suppose we are looking at k values of ` and let q`(α) be the

αth quantile of the distribution of Z∗` . Then to design a test with significance level α, one

could use the Bonferroni procedure and reject the null if one of the Z∗` s exceeds q`(1−α/k)

(informally, one would test each hypothesis at the α/k level). The Bonferroni method is

known to be overly conservative in the sense that it has low power and a better approach is

to conduct an α-level test is as follows:

1. Calculate the p-values for each of the Z∗` and find the minimum p-value.

2. Compare the observed minimum p-value with the distribution of the minimum p-value

under the null hypothesis.

In the first step, we are choosing the coordinate of the multivariate test statistic that gives

the greatest evidence against the null hypothesis. In the second step, we compare our

test statistic with what one would expect under the null. We call this the Best Path (BP)

test/statistic. In Section 3.4, we will see that this simple way of combining the information in
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all the coordinates of the multivariate test statistic enjoys remarkable practical performance.

At this point, one might be worried that the computational cost for calculating the Z∗` s

is prohibitive. This is not the case. In fact, besides having sound statistical properties, the

BP test is also designed to be rapidly computable. This is the subject of Section 3.2.

3.1.2 Why multiscale chirplets?

If one were to use monoscale chirplets, i.e., a set of chirplets living on time intervals of

the form [k2−j , (k + 1)2−j) for a fixed scale 2−j , then all the paths would have the same

length (equal to 2j) and the issue of how to best trade-off between the goodness of fit and

the complexity of the fit would, of course, automatically disappear. One could then apply

the GLRT (3.3), which is rapidly computable via dynamic programming, as we will see in

Section 3.2.1.

Multiscale chirplets, however, provide a much richer structure. Whereas a monoscale ap-

proach imposes the use of templates of the same length everywhere, the multiscale approach

offers the flexibility to use shorter templates whenever the instantaneous frequency exhibits

a complicated structure, and longer templates whenever it exhibits a simpler structure. In

other words, the multiscale chirplet graph has the advantage of automatically adapting to

the unknown local complexity of the signal we wish to detect. Moreover, with monoscale

models, one would need to decide which scale to use and this may be problematic. The

best scale for a given signal may not be the best for a slightly different signal, so that the

whole business of deciding upon a fixed scale may become rather arbitrary. We are of course

not the first to advocate the power of multiscale thinking as most researchers in the field

have experienced it (the list of previous “multiscale successes” is very long by now and ever

increasing). Here, we simply wish to emphasize that the benefits of going multiscale largely

outweigh the cost.

3.2 Best Path algorithms

This section presents an algorithm for computing the Best Path statistic, which requires

solving a sequence of optimization problems over all possible paths in the chirplet graph; for

each ` in a discrete set of lengths, we need to solve problem (3.5). Although the number of

paths in the graph is exponential in the sample size N , the BP statistic is designed in such
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way that it allows the use of network flow algorithms for rapid computation. We will find out

that the complexity of the search is of the order of the number of arcs in the chirplet graph

times the maximum length of the path we are willing to consider. Later in this section,

we will discuss proxies for the Best Path statistic with even more favorable computational

complexities.

Before we begin, we assume that all the vertices in the chirplet graph are labeled and

observe that the chirplet graph is a directed and acyclic graph, meaning that the vertices

on any path in the graph are visited only once (i.e., the graph contains no loops). Suppose

that two vertices v and w are connected, then we let C(v, w) be the cost associated with

the arc (v, w), which throughout this section is equal to the square of the chirplet coefficient

at the node w, C(v, w) = |〈y, fw〉|2. (We emphasize that nothing in the arguments below

depends on this assumption.) To properly define the cost of starting-vertices, we could

imagine that there is a dummy vertex from which all paths start and which is connected to

all the starting-vertices in the chirplet graph. We put |E| and |V | to denote the number of

arcs and vertices in the graph under consideration.

3.2.1 Preliminaries

An important notion in graph optimization problems is that of topological ordering. A topo-

logical ordering of a directed acyclic graph is an ordering of the vertices(vi), i = 1, . . . , |V |,

such that for every arc (vi, vj) of the graph, we have i < j. That is, a topological ordering

is a linear ordering of all its vertices such that the graph contains an edge (vi, vj), then vi

appears before vj in the ordering. From now on, we will use the notations i or v to denote

vertices and (i, j) or (v, w) to denote edges interchangeably.

Labeling chirplets in the chirplet graph is easy. We move along the time axis from left to

right, taking the smallest possible time step (depending on the smallest allowable scale) and

label all the chirplets starting from the current position on the time axis; all these chirplets

are not connected to each other and, therefore, we may order them freely. Any chirplet

starting at a later time will receive a larger topological label and, therefore, the chirplets

are arranged in topological order.

Suppose we wish to find the so-called shortest path in the chirplet graph, i.e., solving the

optimization problem (3.3). (In the literature on algorithms this is called the shortest path,

because by flipping the cost signs and interpreting the costs as distances between nodes this
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is equivalent to finding the path along which the sum of the distances is minimum.) To find

the shortest path, one can use Dijkstra’s algorithm, which is known to be a good algorithm

[2]. We let i = 0 be the source or dummy node and d(v) be the value of the maximum path

from the source to node v. Below, the array pred will be a list of the predecessor vertices in

the shortest path. That is, if pred(j) = i, then the arc (i, j) is on the shortest path.

Algorithm for shortest path in a chirplet graph:

• Set d(s) = 0 and d(i) = 0 for i = 1, . . . , |V |.

• Examine the vertices in topological order. For i = 1, . . . , |V |:

– Let A(i) bet the set of arcs going out from vertex i.

– Scan all the arcs in A(i). For (i, j) ∈ A(i), if d(j) < d(i) + c(i, j), set d(j) =

d(i) + c(i, j) and pred(j) = i.

Since every arc is visited only once, this shows that the maximum path in the chirplet graph

can be found in O(|E|) where we recall that |E| is the number of edges in the graph.

3.2.2 The Best Path algorithm

The idea of solving a Shortest Path problem using updated costs can be used to solve a

Lagrangian relaxation of the Constrained Shortest Path problem. This approach is well

known in the field of Network Flows. Solving the problem (3.5) for every possible length

would give us the points defining the convex hull of the achievable paths, i.e., the convex

hull of the points (|W |, C(W )), where C(W ) is the cost of the path W . A point on the

convex hull is a solution to

max
W

∑
v∈W
|〈y, fv〉|2 − λ |W |, (3.6)

where λ is some positive number, which can be solved by the Dijkstra’s algorithm by setting

C̃(v, w) = C(v, w) − λ. Then one could try to solve a series of problems of this type for

different values of λ to hunt down solutions of the Constrained Shortest Path problem for

different values of length. There are many proposed rules in the literature for updating λ

but nothing with guaranteed efficiency.

Perhaps surprisingly, although the Constrained Shortest Path problem is in general NP-

complete for noninteger times; we can solve it in polynomial time by changing the Shortest
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Path algorithm only slightly [54]. We let i = 0 be the source node and d(i, k) be the value of

the maximum path from the source to node i using exactly k arcs, where k ranges from 0 to

`max. As before, we denote by pred(i, `) the vertex which precedes vertex i in the tentative

best path of length ` from the source node to vertex k. The following algorithm solves

the Constrained Shortest Path problem in about O(`max |E|), where `max is the maximum

number of vertices allowed in the path and |E| is the number of edges in the graph.

Best Path Algorithm:

• Set d(0, ·) = 0 and d(i, ·) = 0 for i = 1, . . . , |V |.

• Examine vertices in topological order. For i = 1, . . . , |V |:

– Let A(i) be the set of arcs going out from vertex i.

– Scan arcs in A(i). For (i, j) ∈ A(i), for k = 1, . . . , `max, if d(j, k) < d(i, k − 1) +

c(i, j), set d(j, k) = d(i, k − 1) + c(i, j) and pred(j, k) = i.

This algorithm is slightly more expensive than the Shortest Path algorithm since it

needs to keep track of more distance labels. The memory storage requirement is of size

O(|V | × `max) for storing the distance labels and the predecessor vertices. If we want to

include all possible lengths in (3.5) so that `max is of about size N in the chirplet graph,

then the memory would scale as O(N ×MN ), where MN is the number of chirplets.

3.2.3 Variations

There are variations on the BP statistic which have lower computational costs and storage

requirements, and this section introduces one of them. Instead of computing (3.5), we could

solve the Minimum-Cost-to-Time Ratio problem (MCTTR)

max
W∈Wk

∑
v∈W

|〈y, fv〉|2

|W |
, (3.7)

where for each k, Wk is a subset of all paths in the chirplet graph. A possibility is to let W0

be the set of all paths, W1 be the set of paths which cannot use chirplets at the coarsest

scale, W2 be the set of paths which cannot use chirplets at the two coarsest scales, and so

on. Hence the optimal path solution to (3.7) is forced to traverse at least 2k nodes. In

this way, we get a family of near-optimal paths of various lengths. There is an algorithm
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which allows computing the MCTTR for a fixed k by solving a sequence of Shortest Path

problems (see Section 3.2). This approach has the benefit of requiring less storage, namely,

of the order of O(|V |), and for each k, the computational cost of computing the Best Path

is typically of size O(|E|).

3.2.4 MCTTR algorithms

In this section, we briefly argue that one can compute the MCTTR introduced in Section

3.2.3 efficiently [2, 29]. Assume that p? is the maximum value of
∑

i∈W c(i, j)/|W | (with

optimal solution W ?) and that we have a lower bound p0 on p? (a trivial lower bound for

the chirplet problem is p0 = 0). Suppose that W0 solves the Shortest Path (SP) problem

with modified costs c0(i, j) = c(i, j) − p0. Then there are three possible cases, and we will

rule one out:

1.
∑

W0
c0(i, j) < 0. Then

∑
W c0(i, j) ≤

∑
W0

c0(i, j) < 0 for all paths W and∑
W ? c(i, j)/|W ∗| < p0 ≤ p?. This is a contradiction and this case never comes up.

2.
∑

W0
c0(i, j) = 0. Then

∑
W c0(i, j) ≤

∑
W0

c0(i, j) = 0 and, hence,∑
W c(i, j)/|W | ≤ p0 for all paths W . We conclude that p0 = p?.

3.
∑

W0
c0(i, j) > 0. Then

∑
W0

c(i, j)/|W0| > p0 and we have a tighter lower bound on

p∗. Take p1 =
∑

W0
c(i, j)/|W0| and repeat with the new costs c1(i, j) = c(i, j)− p1.

The MCTTR algorithm solves a sequence of SP problems, and visits a subset of the vertices

on the boundary of the convex hull of the points (|W |, C(W )) until it finds the optimal

trade-off. The number of vertices is, of course, bounded by the maximum possible length

`max of the path. In practice, the MCTTR converges after just a few iterations—between 4

and 6 in our simulations.

Note the Shortest Path algorithm we have presented relies heavily on the fact that our

graph is acyclic. Were it not, we could not hope to solve the Constrained Shortest Path

problem in polynomial time. This is well known to be an NP-hard optimization problem

in general (see [2]). We have only described algorithms that are needed for our statistical

procedures. Because of the graph structure, a wealth of algorithms from the literature for

networks is at our disposal.
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3.3 Extensions

Thus far, we have considered the detection problem of chirps with slowly time-varying

amplitude in Gaussian white noise; in this section, we discuss how one can extend the

methodology to deal with a broader class of problems.

3.3.1 Colored noise

We consider the same detection problem (3.1) as before but we now assume that the noise z

is a zero-mean Gaussian process with covariance Σ. Arguing as in Section 3.1, the GLRT for

detecting an alternative of the form λf where λ ∈ R and f belongs to a class of normalized

templates is of the form

min
λ∈R, f∈F

e−(y−λf)TΣ−1(y−λf)/2,

which simplifies to

max
f∈F

|yTΣ−1f |2

fTΣ−1f
. (3.8)

Note that the null distribution of |yTΣ−1f |2/fTΣ−1f follows a chi-square distribution with

one degree of freedom.

Our strategy then parallels that used in the white noise model. We define new chirplet

costs by

C(v) =
|yTΣ−1fv|2

fTv Σ−1fv
, (3.9)

and compute a sequence of statistics by solving the Constrained Shortest Path problem

T ∗` := max
W

∑
v∈W

C(v), |W | ≤ `. (3.10)

Note that we still allow ourselves to call such statistics T ∗` since they are natural general-

izations of those introduced earlier. We then form the family Z∗` := T ∗` /` and find the Best

Path by applying the multiple comparison procedure of Section 3.1.1. In short, everything is

identical but for the cost function, which has been adapted to the new covariance structure.

In particular, once the new costs are available, the algorithm for finding the best path is the

same and, therefore, so is the computational complexity of the search.
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3.3.2 Computation of the new chirplet costs

In the applications we are most interested in, the noise process is stationary and we will

focus on this case. It is well known that the Discrete Fourier Transform (DFT) diagonalizes

the covariance matrix of stationary processes so that

Σ = F ∗DF, D = diag(σ2
ω),

where F is the N by N DFT matrix, Fkt = exp(−ı2πkt/N)/
√
N , 0 ≤ k, t ≤ N − 1, and

σ2
1, . . . , σ

2
N are the eigenvalues of Σ.

To compute the chirplet costs, we need to evaluate the coefficients y∗Σ−1fv. Observe

that

y∗Σ−1fv = ỹ∗fv, ỹ = Σ−1y = F ∗D−1Fy.

In other words, we simply need to compute ỹ and apply the discrete chirplet transform.

The cost of computing ỹ is negligible since it only involves two 1D FFT of length N and

N multiplications. Hence, calculating all the coefficients y∗Σ−1fv takes about the same

number of operations as applying the chirplet transform to an arbitrary vector of length N .

To compute the costs, we also need to evaluate f∗vΣ−1fv, which can of course be done

offline. It is interesting to notice that this can also be done rapidly. We explain how in the

case where the discretization is that introduced in Section 2.3. First, observe that for any

pair of chirplets fv, fw which are time-shifted from one another, we have

f∗vΣ−1fv = f∗wΣ−1fw,

since Σ−1 is time invariant. Thus we only need to consider chirplets starting at t = 0.

Second, letting (f̂ [ω])0≤ω≤N−1 be the DFT of (f [t])0≤t≤N−1

f̂ [ω] =
1√
N

N−1∑
t=0

f [t] e−ı2πωt/N ,

we have that

f∗Σ−1f =
N−1∑
ω=0

|f̂ [ω]|2/σ2
ω.
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All the chirplets associated with the fixed time interval [0, 2−j) are of the form

fa,b[t] = |I|−1/2 eı2π(bt/N+a(t/N)2/2) 1I(t),

where b = 0, 1, . . . , N−1, and a is a discrete set of slopes of cardinality about N/2j . Now the

modulation property of the DFT gives f̂a,b[ω] = f̂a,0[ω− b] and so we only need to compute

the DFT of a chirplet with zero frequency offset. This shows that for a fixed slope, we can

get all the coefficients corresponding to all offsets by means of the convolution

f∗a,bΣ
−1fa,b =

N−1∑
ω=0

|f̂a,0[ω − b]|2/σ2
ω,

which can be obtained by means of 2 FFTs of length N . With the assumed discretization,

there are about N/2j slopes at scale 2−j and so computing f̂a,0[ω] for all slopes has a cost

of at most O(N2/2j · logN) flops. Hence the total cost of computing all the coefficients

f∗vΣ−1fv is at most O(N2 logN) and is comparable to the cost of the chirplet transform.

3.3.3 Varying amplitudes

We are still interested in detecting signals of the form S(t) = A(t) exp(ıλϕ(t)), but A(t) is

such that fitting the data with constant amplitude chirplets may not provide local correla-

tions as large as one would wish; one would also need to adjust the amplitude of the chirplet

during the interval of operation.

To adapt to this situation, we choose to correlate the data with templates of the form

p(t) eıϕv(t)1I(t), where p(t) is a smooth parametric function (e.g., a polynomial of a degree

at most 2), and eıϕv(t)1I(t) is an unnormalized chirplet. The idea is, of course, to look for

large correlations with superpositions of the form

∑
v∈W

pv(t)f̃v(t), f̃v(t) = eıϕv(t) 1I(t).

Fix a path W . In the white noise setup, we we would select the individual amplitudes pv to

minimize ∑
v∈W

∑
t∈I
|yv(t)− pv(t)f̃v(t)|2, (3.11)

and for each chirplet, pv would be adjusted to minimize
∑

t∈I |yv(t) − pv(t)f̃v(t)|2. Put
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ỹv(t) = yv(t) exp(ıϕv(t)) and let P denote the projector onto a small dimensional subspace

S of smooth functions over the interval I (e.g., the space of polynomials of degree 2); if

b1(t), . . . , bk(t) is an orthobasis of S, then P ∗ is the matrix with the bis as columns. The

minimizer pv is then given by P ỹv and it follows from Pythagoras’ identity that ‖ỹv−P ỹv‖2 =

‖ỹv‖2 − ‖P ỹv‖2. We introduce some matrix notations and let Φv = diag(eıϕv(t)) so that

ỹv = Φ∗vyv. Then one can apply the same strategy as before, but with chirplet costs equal

to

C(v) = ‖P ỹv‖2 = ‖Av y‖2, Av = PΦ∗v. (3.12)

It follows from this equation that the complexity of computing these costs is of the same

order as that of computing the chirplet transform.

Suppose now that the covariance is arbitrary, then one chooses pv solution to

min
p∈S

(y − Φvp)∗Σ−1(y − Φvp) = y∗y − y∗Σ−1A∗(AΣ−1A∗)−1AΣ−1y,

so that the general chirplet cost is of the form

C(v) = y∗Σ−1A∗(AΣ−1A∗)−1AΣ−1y, Av = PΦ∗v. (3.13)

3.3.4 Computing the general chirplet costs

We briefly argue that the number of flops needed to compute all the costs (3.13) is of the

same order as that needed for the original chirplet transform. Rewrite the cost (3.13) as

C(v) = x∗vB
−1
v xv xv = AvΣ−1y, Bv = AvΣ−1A∗v.

Then all the xvs and all the B−1
v s can be calculated rapidly. Once xv and Bv are avail-

able, computing xvB−1xv is simply a matter of calculating B−1
v x—either a small matrix

multiplication or the solution to a small linear system depending on whether we store Bv or

B−1
v —followed by an inner product.

We begin with the xvs. We have already shown how to apply Σ−1 rapidly by means of

the FFT (see Section 3.3.2). With ỹ = Σ−1y, the jth coordinate of xv is given by

∑
t

ỹ(t)bj(t)fv(t).
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We then collect all the xvs by multiplying the data with the appropriate basis functions and

taking a chirplet transform. If we have k such basis functions per interval, the number of

flops needed to compute all the xvs is about k times that of the chirplet transform.

We now study Bv. Note that for each v, Bv is a Hermitian k by k matrix and so that

we only need to store k(k + 1)/2 entries per chirplet; e.g., 3 in the case where k = 2, or 6

in the case where k = 3. Also in the special case where k = 1 (constant amplitude), P is

the orthogonal projection onto the constant function equal to one and Bv = n−1
I (f∗vΣ−1fv),

where nI is the number of discrete points in the interval I. Computing Bv is nearly identical

to computing f∗vΣ−1fv, which we already addressed. First, by shift invariance, we only need

to consider chirplet indices starting at time t = 0. Second, we use the diagonal representation

of Σ−1 to write the (i, j) entry of Bv as

N−1∑
ω=0

f̂vbi[ω] f̂vbj [ω]σ−2
ω .

Two chirplets fv and fw at the same scale and sharing the same chirp rate differ by a

frequency shift ω0 so that f̂wb`[ω] = f̂vb`[k − ω0]. Again, one can use circular convolutions

to decrease the number of operations. That is, we really only need to evaluate Bv for

chirplets starting at t = 0 and with vanishing initial frequency offset. In conclusion, just as

in the special case and for the discretization described in Section 2.3, one can compute all

the Bvs in order O(N2 logN) flops. To be more precise, the cost is here about k(k + 1)/2

that of computing f∗vΣ−1fv for all chirplets.

3.3.5 Real-valued signals

In our simulations, we considered the detection of complex-valued chirps and we now rapidly

discuss ways to extend the methodology to real-valued data where the signal is of the form

S(t) = A(t) cos(λϕ(t)) with unknown phase and amplitude. Again, the idea is to build a

family of real-valued chirplets which exhibit good local correlations with the signal. To do

this, we could consider chirplets with quadratic phase aµt2/2 + bµt + cµ and build a graph

in which connectivities impose regularity assumptions on the phase function. The downside

with this approach is that for each chirplet, one would need to introduce the extra phase-

shift parameter cµ, which would increase the size of the dictionary and of the graph. This

is not desirable.
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A much better strategy is as follows: we parameterize chirplets in the same way with

v = (I, µ) where I is the time support of a chirplet and aµt + bµ is the instantaneous

frequency, and define the chirplet cost by

C(v) := max
c

∣∣∑
t∈I yt cos(aµt2/2 + bµt+ c)

∣∣2∑
t∈I cos2(aµt2/2 + bµt+ c)

. (3.14)

That is, we simply select the phase shift which maximizes the correlation (note that with

complex data, the corresponding ratio |
∑
yt exp(ı(aµt2/2 + bµt+ c))|2/

∑
| exp(ı(aµt2/2 +

bµt+ c))|2 is, of course, independent of c). One can use simple trigonometric identities and

write the numerator and denominator in (3.14) as

A2 cos2 c− 2AB sin c cos c+B2 sin2 c, C2 cos2 c− 2D sin c cos c+ E2 sin2 c,

where with ϕµ(t) = aµt
2/2 + bµt,

A+ ıB =
∑

yt e
ıϕµ(t),

and

C2 =
∑

cos2 ϕµ(t), D =
∑

cosϕµ(t) sinϕµ(t), E2 =
∑

sin2 ϕµ(t).

Note that A + ıB is nothing else than the chirplet coefficient of the data and C,D, and E

can be computed off-line. There is an analytic formula for finding the value of cos c (or sin c)

that maximizes the ratio as a function of A,B,C,D, and E; see Appendix A for details.

This extends to the more sophisticated setups discussed in Section 3.3.

Finally, there are further approximations which one could use as well. Observe the

expansion of the denominator in (3.14)

∑
t∈I

cos2(ϕµ(t) + c) = |I|/2 + 1/2
∑
t∈I

cos(2ϕµ(t) + 2c),

where |I| is here the number of time samples in I. Then for most chirplets (when the support

contains a large number of oscillations), the second term in the right-hand side is negligible

compared to the first. Assuming that the denominator is about equal to |I|/2 for all phase

shifts c, we would then simply maximize the numerator in (3.14). A simple calculation shows
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that exp(ıc) = (A+ ıB)/

√
A2 +B2 and

C(v) ≈ 2

∣∣∣∣∣∑
t∈I

yte
−ı(aµt2+bµt)/

√
|I|

∣∣∣∣∣
2

(the “≈” symbol indicates the approximation in the denominator). Hence, the real-valued

cost is just about twice the usual complex-valued cost.

3.3.6 A subtlety for rapidly changing noise spectra and real-valued data

In the case of complex-valued data and white noise the chirplet costs all have the same

distribution under H0, independent of location, scale, slope, and frequency offset. This

helps to make the chirplet graph “homogeneous” as far as the costs are concerned, although,

of course, the graph topology itself could be a source of some inhomogeneity and cause the

costs to be correlated. In cases where the chirplet costs do not all have the same distribution

there could be chance that the best path through the graph would on average prefer to go

through a certain set of vertices where extreme values would be more probable under H0.

In the case of real-valued data and colored noise, the chirplet costs do not, in general,

have exactly the same distribution under H0. Therefore it is important to understand in

which circumstances the distribution of the chirplet costs can vary substantially and cause

the chirplet graph to have “preferred” set of vertices for the best paths to go through under

H0.

Consider a data sequence (yt), or in vector notation y = [y0, . . . , yN−1]T , where y is

a real-valued multivariate Gaussian random vector such that y ∼ N(0,Σ). Let x be a

complex-valued N × 1 vector, which we will take as a discrete chirplet sampled from a

function f(t) = 1I(t) exp(iϕ(t)), where the interval I is the support of the chirplet and

ϕ(t) = a/2t2 + bt, for some fixed real scalars a and b. We want to investigate the effect of

the covariance matrix Σ on the expected value and variance of the chirplet cost:

Cx(y) =
|y∗Σ−1x|2

x∗Σ−1x
.

Since

E|y∗Σ−1x|2 = x∗Σ−1 (Eyy∗) Σ−1x = x∗Σ−1x,
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the expected value of the chirplet cost Cx(y) under H0 is

E[Cx(y)] = 1,

independent of the covariance Σ or the chirplet x. To calculate the variance of the chirplet

cost we introduce the variables

gr := Σ−1/2xr and gr := Σ−1/2xi,

where xr := Re(x) and xi := Im(x) are the real and imaginary parts of the chirplet x. The

multivariate Gaussian vector y can be written in the form y = Σ1/2z, where z ∼ N(0, IN×N ).

This allows us to write

y∗Σ−1x = z∗Σ−1/2x = z∗gr + iz∗gi.

Then,

|z∗Σ−1/2x|2 = (z∗gr)2 + (z∗gi)2,

and

E|z∗Σ−1/2x|4 = E(z∗gr)4 + E(z∗gi)4 + 2E
(
(z∗gr)2(z∗gi)2

)
.

Note that

z∗gr ∼ N(0, ‖gr‖2), and z∗gi ∼ N(0, ‖gi‖2),

where ‖gr‖2 = x∗rΣ
−1xr and ‖gi‖2 = x∗iΣ

−1xi. To carry the calculations further we will use

the following well-known facts for Gaussian random variables:

E[Z4] = 3, Z ∼ N(0, 1),

and

E[U2V 2] = V ar(U)V ar(V ) + 2 (Cov(U, V ))2 ,

for two jointly Gaussian random variables U and V . 1 Denote the correlation between z∗gr
1To prove the latter equality we let U ∼ N(0, σ2

1) and V ∼ N(0, σ2
2) with ρ = Cov(U, V )/(σ1σ2).

Without loss of generality we can assume ρ ≥ 0 so we can write U =
√

1− ρ · σ1Z1 +
√
ρ · σ1Z3 and

V =
√

1− ρ · σ2Z2 +
√
ρ · σ2Z3 where Z1, Z2, and Z3 are i.i.d. standard normal random variables. The

equality follows immediately.
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and z∗gi by

ρ :=
Cov(z∗gr, z∗gi)
‖gr‖‖gi‖

=
g∗rgi
‖gr‖‖gi‖

.

Then,

E|z∗Σ−1/2x|4 = 3‖gr‖4 + 3‖gi‖4 + 2‖gr‖2‖gi‖2(1 + 2ρ2).

and we have established:

Lemma 1. Let y ∼ N(0,Σ) be a random vector in RN and x be a fixed vector in CN .

Then the random variable Cx(y) = |y∗Σ−1x|2
x∗Σ−1x

satisfies

E[Cx(y)] = 1,

and

V ar[Cx(y)] =
3‖gr‖4 + 3‖gi‖4 + 2‖gr‖2‖gi‖2(1 + 2ρ2)

(‖gr‖2 + ‖gi‖2)2
− 1.

If we can do the approximation ‖gr‖ ≈ ‖gi‖ we would have

V ar[Cx(y)] ≈ 6‖gr‖4 + 2‖gr‖4(1 + 2ρ2)
4‖gr‖4

− 1 = 1 + ρ2.

We can expect such an approximation to hold at least for chirplets at high frequency and

with large time support (due to the Riemann-Lebesgue lemma). This suggests that the

correlation between z∗gr and z∗gi could be a source of difference in the distribution of

chirplet costs. That is,

ρ2 =
(

g∗rgi
‖gr‖‖gi‖

)2

=

(
x∗rΣ

−1xi
)2

(x∗rΣ−1xr)(x∗iΣ−1xi)
.

If we assume the noise to be stationary, the covariance matrix Σ can be approximately

diagonalized with the Fourier matrix F so Σ ≈ FDF ∗, where D is a diagonal matrix with

the eigenvalues, or the spectrum, of Σ on the diagonal. In the case when the noise is circular

stationary an exact equality holds, or Σ = FDF ∗. This shows how the variance of the

chirplet cost depends, approximately, on the smoothness of the noise spectrum and the

frequency support of the chirplet. If the noise spectrum is roughly equal to a constant Dθ



41
over the frequency support of the chirplet x, then

x∗rΣ
−1xi ≈ (Fxr)∗D−1(Fxi) ≈ D−1

θ x∗rxi.

Similarly, x∗rΣ−1xr ≈ D−1
θ x∗rxr and x∗iΣ

−1xi ≈ D−1
θ x∗ixi. That would give

ρ2 ≈
(
|x∗rxi|

‖xr‖ · ‖xi‖

)2

.

Since |x∗rxi| would usually be small compared to ‖xr‖ · ‖xi‖, this would cause ρ2 to be small

and the variance of the chirplet cost to be close to 1. However, if the noise spectrum varies

greatly over the frequency support of the chirplet x, these heuristics do not hold and the

variance of the chirplet cost could be greater than 1. We have verified this numerically using

the formula of the variance from Lemma 1. This difference in variance potentially degrades

the performance of the method, since under H0 the chirplet costs might tend to be bigger

around frequencies where the noise spectrum changes rapidly, resulting in a bigger value of

the BP statistic. This is behavior has been observed in our numerical experiments involving

rapidly changing noise spectra.

In practice, if possible, one might want stay away from frequency bands where the

noise spectrum changes dramatically and restrict the chirplet graph to regions where it

is slowly changing. This has proven to work well in our numerical experiments. Another

unexplored possibility would be to try correcting for the difference in variance by normalizing

the chirplets, by using the formula from Lemma 1, such that all the chirplet costs under H0

have unit-variance.

3.4 Numerical Simulations

We now explore the empirical performance of the detection methods proposed in this paper.

To this end, we have developed ChirpLab, a collection of Matlab routines that we have made

publicly available (see Section 10.1). For simplicity, we use a chirplet dictionary with the

discretization discussed in Section 2.3. We also consider a slightly different chirplet graph

which assumes less regularity about the instantaneous frequency of the unknown chirp;

namely, two chirplets are connected if and only if they live on adjacent time intervals and

if the instantaneous frequencies at their juncture coincide. In practical situations such as
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gravitational wave detection, the user would be typically given prior information about the

signal she wishes to detect which would allow her to fine-tune both the discretization and the

connectivities for enhanced sensitivity. We will discuss these important details in a separate

publication. Our goal here is merely to demonstrate that the methodology is surprisingly

effective for detecting a few unknown test signals.

3.4.1 The basic setup

We generated data of the form

yi = αSi + zi, i = 0, 1, . . . , N − 1,

where (Si) is a vector of equispaced time samples of a complex-valued chirp, and where (zi)

is a complex-valued white noise sequence: z = z0 + ı z1 where z0 and z1 are two independent

vectors of i.i.d. N(0, 1/2) variables. Note that E|zi|2 = 1 and E‖z‖2 = N . In this setup,

we define the SNR as the ratio

SNR =
‖αS‖√
N

. (3.15)

We have chosen to work with complex-valued data and want to emphasize that we could

just as well perform simulations on real-valued data and detect real-valued signals (see

Appendix A for details). In all our experiments, the signal S obeys the normalization

‖S‖ =
√
N so that the parameter α actually measures the SNR. We considered signals of

size N = 512, 1024, 2048, 4096. The chirps are of the form

S(t) = A(t)eıNϕ(t), (3.16)

and sampled at the equispaced points ti = i/N , i = 0, 1, . . . , N − 1. We considered two test

signals.

1. A cubic phase chirp with constant amplitude:

A(t) = 1, ϕ(t) = t3/24 + t/16.
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Figure 3.2: Instantaneous frequency ϕ′(t) of the chirps under study: (a) Cubic phase chirp, (b)
Cosine phase chirp

2. A cosine phase chirp with slowly varying amplitude:

A(t) = 2 + cos(2πt+ π/4), ϕ(t) = 2π (sin(2πt)/4π + 200πt/1024) .

Note that because of the factor N in the exponential (3.16), we are not sampling the same

signal at increasingly fine rates. Instead, the instantaneous frequency of S is actually chang-

ing withN and is equal toNϕ′(t) so that the signal may oscillate at nearly the sampling rate,

no matter what N is. Figures (3.2) and (3.3) show the rescaled instantaneous frequency,

ϕ′(t) and the real part of the signals under study for N = 1024.

For detection, we use the BP test statistic introduced in Section 3.1.1 with {1, 2, 4, 8, 16}

as our discrete set of path lengths. We estimated the distribution of the minimum P -value

under the null hypothesis via Monte Carlo simulations. For the most part of the performance

analysis, we selected a detection threshold giving a probability of false detection (Type I

error) equal to 5% (.05 significance level). In the literature of gravitational wave detection,

one typically considers much lower probabilities of false alarm and this is the reason why we

also report on experiments with a probability of Type I error set at .05%, i.e., an average of

only 5 false alarms in 10,000.

• For signal lengths N = 512, 1024, 2048, we randomly sampled about 100,000 realiza-

tions of white noise to compute the detection threshold (the quantile of the minimum

P -value distribution). For N = 4096, we used 250,000 realizations of white noise.
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Figure 3.3: Real part A(i/N) cos(Nϕ(i/N)), i = 0, . . . , N − 1 of the of the chirps under study: (a)
Cubic phase chirp, (b) Cosine phase chirp. The cosine phase chirp has a slowly varying amplitude.
Note that the instantaneous frequency depends on the sample size N .

• For each signal length, each signal, and each SNR, we sampled the data model about

1,000 times in order to compute detection rates, or (equivalently) the so-called power

curves.

In these simulations, we only considered chirplets with positive frequencies and for the

larger signal sizes, N = 2048, 4096, we restricted ourselves to discrete frequencies on the

interval {0, . . . , N/4 − 1} to save computational time. In all cases the slope parameters aµ

of the chirplets (see equation (2.2)) ranged from −πN to πN , with a discretization at scale

2−j of the form aµ = 2πN(−1/2 + k ·m2j−J) where J = log2N ; m = 1, k ∈ {0, . . . , 2J−j}

for signal lengths N = 512, 1024, 2048 and m = 4, k ∈ {0, . . . , 2J−j−2} for N = 4096. This

ensures that any endpoint of a dyadic interval is an integer multiple of 2π.

The scales considered ranged from the coarsest 20 to 2−s with s = 6 for N = 512, 1024,

s = 5 for N = 2048 and s = 4 for N = 4096 (the motivation again is speed). In practice,

these parameters would depend upon the application and would need to be selected with

care. Tables 3.1 and 3.2 show the correlation between the waveforms and the best chirplet

path with a fixed length. Although we use a coarser discretization and fewer scales when

N = 4096, the correlation is still very high, at least for path lengths 8 and 16. Table 3.3

shows the correlations between the cosine phase chirp and chirplets with adapted amplitudes.

As expected, the correlation increases.



45

signal length N ` = 1 ` = 2 ` = 4 ` = 8 ` = 16
512 0.0718 0.4318 0.7126 0.9905 0.9982
1024 0.0453 0.2408 0.5784 0.9814 0.9981
2048 0.0306 0.1643 0.5107 0.9469 0.9976
4096 0.0229 0.0953 0.4265 0.8158 0.9917

Table 3.1: Correlations between the cosine phase signal and the best chirplet path with fixed lengths
` ∈ {1, 2, 4, 8, 16}

signal length N ` = 1 ` = 2 ` = 4 ` = 8 ` = 16
512 0.2382 0.8733 0.9903 0.9979 0.9999
1024 0.1498 0.6575 0.9883 0.9985 0.9997
2048 0.0932 0.3836 0.9671 0.9976 0.9995
4096 0.0590 0.2373 0.8734 0.9903 0.9971

Table 3.2: Correlations between the cubic phase signal and the best chirplet path with fixed lengths
` ∈ {1, 2, 4, 8, 16}

d : degree of polynomials ` = 1 ` = 2 ` = 4 ` = 8 ` = 16
[2, 1, 1, 1, 1, 1] 0.1481 0.2852 0.5699 0.9612 0.9995
[2, 2, 2, 1, 1, 1] 0.1481 0.3337 0.5999 0.9612 0.9995
[2, 2, 2, 2, 2, 2] 0.1481 0.3337 0.6122 0.9823 0.9999

Table 3.3: Correlations between the cosine phase signal and the best chirplet path with fixed lengths
` ∈ {1, 2, 4, 8, 16} (chirplets with varying amplitude). N = 2048. The first column indicates the
degree of the polynomial used to fit the amplitude. The entry dj in d = [d0, d1, . . . , d5] is the degree
of the polynomial at scale 2−j .
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3.4.2 Results from simulations

To measure the performance of the BP statistic, we first fix the probability of Type I error

at 5% and estimate the detection rate, the probability of detecting a signal when there is

signal. We compute such detection curves for various SNRs (3.15). To limit the number of

computations we focus on a small set of signal levels around the transition between a poor

and a nearly perfect detection.

Figures 3.4 and 3.5 present results of a simulation study and display the power curves

for both chirps and for various sample sizes. Of course, as the sample size increases, so does

the sensitivity of the detector (even though the signal is changing with the sample size). We

also note that the detection of the cubic phase chirp is slightly better than that of the cosine

phase chirp, which was to be expected since the cubic phase chirp is slightly less complex.

(Simulations where one also adapts the amplitude give similar results.)
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Figure 3.4: Detection rates of the cubic phase chirp with the BP method. The probability of Type
I error is fixed at 5%.

Consider the cosine phase chirp with time-varying amplitude and a sample size N equal

to 4, 096. Then the SNR for a detection level in the 95% range is about .12. This means

that one can reliably detect an unknown chirp of about this complexity when the amplitude

of the noise is about 8 times that of the unknown signal. When the probability of Type I

error is orders of magnitude smaller, we expect the detection curves on Figures 3.4 and 3.5

to translate to the right since the H1-acceptance region shrinks a little. Figure 3.6 plots the

detection rate for a probability of Type I error fixed at 0.05%. The level of detectability
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Figure 3.5: Detection rates of the cosine phase chirp with the BP method. The probability of Type
I error is fixed at 5%.

does not change much.
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Figure 3.6: Detection rates of the cosine phase chirp with the BP method. The probability of Type
I error is fixed at 0.05%.

It is interesting to study the performance gain when we increase the signal length. Fix

a detection rate at 95% at the 5% significance level, and plot the SNR that achieves this

rate against the sample size N . Figure 3.7 shows the base-2 logarithm of the estimated SNR

(using a simple linear interpolation of the power curves) versus the logarithm of the sample

size. The points roughly lie on a line with slope -0.4 (fixing a probability of Type I error

at 0.05% also gives a line with slope about -0.4 and we omit the plot); as we double the
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signal length from N to 2N , the SNR required to achieve a 95% detection rate is about

2−0.4 ≈ 0.76 times that required to achieve the same detection rate for the signal length N .

In a parametric setting, we would asymptotically expect a slope of -0.5. The fact that the

slope is slightly higher than this is typical of nonparametric detection problems which deal

with far richer classes of unknown signals [50].
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Figure 3.7: Log-log (base-2) plot of the estimated SNR (for both chirps) at the 95% detection rate
versus signal length N . Again the probability of Type I error is fixed at 5%. In both cases, the slope
is approximately equal to -0.4.

3.4.2.1 Comparison with the detection of a known signal

In order to see how sensitive our test statistic really is, it might be instructive to compare the

detection rates with those one would achieve if one had full knowledge about the unknown

signal. We then consider a simple alternative

H1 : y = αS0 + z,

where the signal is known. That is, if there is signal, we know exactly what it looks like. The

standard likelihood ratio test (LRT) gives the optimal test in terms of maximizing the power

of detection at a given confidence level. A simple calculation shows that at the 5% level,

the power function of the LRT is equal to Φ(1.65 − SNR
√

2N), where Φ is the cumulative

distribution of a standard normal. Figure 3.10 shows this power curve together with those

obtained via the BP test for a sample size N = 4096. The horizontal gap between curves
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indicates the ratio between SNRs to achieve the same detection rate. Consider a detection

level equal to about 95%. Our plot shows that one can detect a completely unknown

signal via the BP statistic with the same power that one would get by knowing the signal

beforehand, provided that the amplitude is about 3 times as large. Figure 3.8 shows a

comparison of the receiver operating characteristic curves (ROC) for the BP test and the

cosine phase chirp at SNR = 0.124, and the LRT at SNR = 0.042. The figure shows that

the 3-to-1 ratio holds over a very wide range of significance levels. Note that this ratio is

small and may be thought of as the price one has to pay for not knowing in advance what

it is.
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Figure 3.8: Comparison of ROCs for the LRT, GLRT (based on the maximum modulus of the
Fourier coefficients) for monochromatic sinusoids when the unknown sinusoid has integer frequency,
and the BP test when the unknown signal is the cosine phase chirp. The signal length is N = 4096.
The x-axis is plotted on a log (base-10) scale.

3.4.2.2 Detection of a monochromatic sinusoid

To appreciate the performance of the BP statistic, it might be a good idea to study a more

subtle problem. Suppose that the unknown signal is a monofrequency sinusoid. If there

is signal, we know it is of the form S(t) = exp(ıωt + φ), where the frequency ω and the

phase shifts are unknown. Consider the simpler case where for a discrete signal of length

N , ω = 2πk/N with k ∈ {0, . . . , N − 1} is one of the N Nyquist frequencies. Letting y0 and
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y1 be the real and imaginary parts of the data y, the GLRT would maximize

∑
0≤t≤N−1

y0
t cos(2πkt/N + φ) + y1

t sin(2πkt/N + φ),

over k = 0, 1, . . . , N − 1 and φ ∈ [0, 2π]. One can take the maximum over φ and check that

the GLRT is equivalent to maximizing∣∣∣∣∣∣
∑

0≤t≤N−1

yte
−ı2πkt/N

∣∣∣∣∣∣
over k. Thus, the GLRT has a simple structure. It simply computes the DFT of the data,

and compares the maximal entry of the response with a threshold. (Note the resemblance

of this problem to the famous problem of testing whether the mean of a Gaussian vector is

zero vs. an alternative which says that one of its component is nonzero.)

We could also make the problem a tiny bit harder by selecting the frequency arbitrarily,

i.e., not necessarily a multiple of 2π but anything in the range [0, 2πN ]. In this case, the

method described above would be a little less efficient, since the energy of the signal would

not be concentrated in a single frequency mode but spill over into neighboring frequencies.

The GLRT would ask to correlate the data with the larger collection of monofrequency

signals, which in practice we could approximately achieve by oversampling the DFT (e.g.,

we could select a finer frequency discretization so that the correlation between the unknown

monochromatic signal we wish to detect and the closest test signal exceeds a fixed tolerance,

e.g. .90 or .99).

We compare the detection rate curve for detecting (i) a monochromatic sinusoid with

integer frequency and (ii) a monochromatic sinusoid with arbitrary frequency using the

maximum absolute DFT coefficient on one hand, and the BP test on the other hand.

The signals in (i) and (ii) are equispaced samples from S1(t) = exp
(
ı2πN8 t

)
and S2(t) =

exp
(
ı2π(N8 + 1

2)t
)
. The signal length N is equal to 4096. Figure 3.9 displays the detection

rates. Consider the 95% detection rate. Then for (i) the SNR for the BP test is about 20%

higher than that for the GLRT. In (ii) the SNR is only 8% higher. Also, at this detection

level, the ratio between the SNRs for the cosine phase chirp and the monofrequency is about

1.75. Figure 3.8 reveals that this ratio holds over a wide range of significance levels. These

results show that “the price we pay” for being adaptive and having the ability to detect a
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rich class of chirping signals is low.
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Figure 3.9: Comparison of the BP and GLRT (based on the maximum modulus of the Fourier
coefficients) for monochromatic sinusoids. The probability of Type I error is set at 5%

3.4.2.3 Detection of a linear chirp

To study “the price of adaptivity”, we also consider the problem of detecting linear chirps.

Suppose that the unknown signal consists of sampled values of a linear chirp of the form

S(t) = exp(ı2πNϕ(t)), where ϕ(t) = at2/2 + bt + c. Here, N = 4096 and the coefficients

a, b, c are adjusted so that the unknown linear chirp is a complex multiple of a chirplet at

the coarsest scale (the GLRT is then the BP test restricted to paths of length 1). In the

simulations, we selected a chirp with a = 1/8, b = 1/16, and c = 0 so that the instantaneous

frequency Nϕ′(t) increased linearly from 256 to 768. Figure 3.10 displays the detection rates

for the GLRT and the BP test with {1, 2, 4, 8, 16} as path lengths. The detection rates for the

BP test and the GLRT are almost the same; the ratio between the SNRs required to achieve

a detection rate of about 95% is about 1.05. This shows the good adaptivity properties of

the BP test. For information, the plot also shows that one can detect a completely unknown

signal via the BP statistic with the same power that one would get for detecting a linear

chirp via the GLRT, provided that the amplitude is about 1.5 times as large.
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Figure 3.10: Comparison of the BP and GLRT detection rates over a set of linear chirps. The
probability of Type I error is set at 5%. Detection rates are plotted along with the detection rates
for the cubic and cosine phase chirps.

3.4.3 Empirical adaptivity on a simulated gravitational wave

Earlier, we argued that the GLRT or the method of matched filters would need to generate

exponentially many waveforms to provide good correlations with the unknown signal of

interest. The idea underlying the chirplet graph is that one can get very good correlations by

considering a reasonably sized dictionary and considering correlations with templates along a

path in the graph. Figure 3.11 shows the real part of a “mock” gravitational waveform whose

instantaneous frequency and amplitude increase roughly as a power law. The waveform is

S(t) = A(t)eıϕ(t) where the phase is

ϕ(t) = a0(tc − t)5/8 + a1(tc − t)3/8 + a2(tc − t)1/4 + a3(tc − t)1/8,

and the amplitude is given by A(t) = [ϕ′(t)]2/3 (see Figure 3.11). The coefficients a0, . . . , a3

were chosen from the post-Newtonian approximation for a binary inspiral as described in

[4, 5]. The coefficient tc is the time of coalescence. The masses of the two bodies were both

chosen to be equal to 14 solar masses and the sampling rate was 2048 Hz. We studied the

last 1024 samples of the waveform.

As seen in Figure 3.12, the correlation with the noiseless waveform is equal to .95 with

just 4 chirplets (with linear time-varying amplitudes) and .99 with just 5 chirplets. So we

would not gain much (if anything at all) by computing inner products with exponentially
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Figure 3.11: Real part of a simulated gravitational wave

many waveforms. Another interesting aspect is that the best chirplet path automatically

adapts to the unknown local complexity of the signal; it uses short templates whenever

required and longer templates when the signal exhibits some coherence over longer periods

of time. Here, the path is refined where the instantaneous frequency starts to rise, which

occurs near the end of the period under study.

3.5 Discussion

We have presented a novel and flexible methodology for detecting nonstationary oscillatory

signals. The approach chains together empirical correlations to form meaningful signals

which may exhibit very large correlations with the unknown signal we wish to detect. Our

experiments show that our algorithms are very sensitive over very broad classes of signals.

3.5.1 Connection with other works

While working on this project ([22]) and writing [23], we became aware of the recent and

independent work of Chassande-Mottin and Pai which is similar in spirit to ours [26]. In

this paper, the authors also search for a chirplet chain in a graph. Despite this similitude,

our approach is distinct in several aspects. First, whereas Chassande-Mottin and Pai use

chirplets at a single scale, we use a multiscale dictionary which provides high flexibility

and adaptivity to the unknown structure of the signal (see Section 3.1.2); the last example
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Figure 3.12: Chirplet paths returned by the BP test for path sizes equal to 1, 2, 3, 4, and 5 (the
chirplets are adapted to have an amplitude varying linearly with time). The signal is a simulated
gravitational wave. The cost here is simply the correlation between the waveform and the best
chirplet path, so that a value of 1 indicates a perfect match. The horizontal and vertical axes
indicate time and frequency. The thin line is the ‘true’ instantaneous frequency of the waveform.
The thick line is the value of the instantaneous frequency along the path.

in Section 3.4 also clearly demonstrates the promise of the multiscale approach for the

practical detection of gravitational waves. Consequently our detection strategy based on

the multiple comparison between test statistics with varying complexities is of course very

different. Second, while we find the best path by dynamic programming, the best chirplet

chain in [26] is not the solution to a tractable optimization problem since the statistic which

needs to be maximized over a set of chirplet paths is not additive. Therefore the authors

need to resort to a series of approximations involving time-frequency distributions such as

the WVD to obtain an approximate solution. This makes our approach also different and

more general since the methodology proposed in this paper may be applied in setups which

have nothing to do with chirplets and chirp detection.

Finally, the aforementioned reference does not address the problem of detecting chirps

with a time varying amplitude, and also assumes that the noise in the data is white or
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has been “whitened” in some fashion (the detection method in [26] requires white noise).

In contrast, the statistics in this paper have a natural interpretation in terms of likelihood

ratios, and can be adapted effortlessly to more sophisticated setups in which the noise may

be colored and in which the amplitude may also be rapidly varying and so on. Only the

chirplet costs need to be changed while other algorithms remain the same.
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Chapter 4

Two-Stage Best Path Test

The BP test assumes that the chirp is either present at all times or the data is pure noise.

Even though our method might be able to detect a signal that is present in a considerable

portion of the data, this detection problem is a bit idealistic. It is easy to imagine practical

situations where one collects a long stream of data, which is typically just noise, and somehow

has to weed through it to look for evidence of signal presence. A concrete example is the

search for gravitational waves we discussed in the Introduction. This chapter extends the BP

test to deal with this situation. The results from numerical experiments which are presented

in Section 4.6 are promising.

4.1 Setup

Before presenting a methodology to deal with these situations, we state the abstract model

problem we will assume throughout this chapter. Assume we have a long stream of sampled

data

yk = λfk + zk, k ∈ I := {0, 1, . . . ,M − 1}; (4.1)

where z = (zk) is a vector of random errors distributed according to some known multivariate

Gaussian distribution, and λ is an unknown real scalar. f = (fk) is a vector of uniform

samples of an unknown continuous function fc belonging to a known class of signals, F ,

where fk = fc(k/Ns), k ∈ I, and 1/Ns is the frequency of sampling. The signals in F have

a time support contained in I, bounded between two known constants, Lmin and Lmax:

1 ≤ Lmin ≤ |supp(f)| ≤ Lmax ≤M.
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Given yk, the goal is to decide between,

H0 : λ = 0, i.e., the data is only noise,

and

H1 : λ > 0, i.e., there is a signal s ∈ F somewhere in the data.

Or in plain words, we would like to detect a presence of a signal in a long stream of data

where the duration of the signal is shorter than the data at hand and we do not know where

it starts or ends. Although we are interested in the situation where F is a class of chirps, the

ideas and methodology we are about to present could be applied to various other problems.

The case we are most interested in is when F is a nonparametric class of functions such that,

|supp(f)| �M for every f ∈ F (i.e., signals that cannot be described with few parameters,

and whose duration is much shorter than the length of the data stream). Thus, we are faced

with several challenges:

1. The unknown signal belongs to a nonparametric class of functions.

2. The support length of the signal is unknown.

3. The position of the signal in the data stream is unknown.

Is it possible to design a method that can efficiently deal with all these situations, is statis-

tically powerful, and is computationally feasible? The goal of this chapter is to provide a

method that satisfies this and provide numerical evidence in its support.

4.2 Method of Matched Filtering

Perhaps the most popular method for detection problems of the form (4.1) is the method of

matched filtering we briefly mentioned in the introduction. Assume noise vector z = (zk) in

(4.1) is multivariate Gaussian with mean zero and covariance matrix Σ; i.e., z ∼ N(0,Σ).

Assume that λ > 0 and that F is a parametric class of signals which is approximated by a

set F̃ . Then the GLRT test would reject H0 for big values of

T = max
f∈F̃

|yTΣ−1f |2

fTΣ−1f
,
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where we write y and f as column vectors. This statistic is the maximum (noise-weighted)

correlation of the signals in F̃ with the data. For each f ∈ F̃ which has a support much

shorter than the data, the discrete set would typically include every time translation of f . In

the case of white noise, i.e., Σ = σ2IM , we could calculate the inner product yT f for every

time translation of f very rapidly by a fast convolution. If Σ is circulant, as in the case of

circular stationary noise, Σ−1 is translation invariant and we can also calculate the inner

products rapidly by means of the FFT algorithm. Thus, the cost due to every template f ,

in the template bank is about O(M logM). Then the cost of calculating T for a template

bank with K templates would be

K ×O(M logM).

4.3 Motivation

Let J be the set of all intervals in I of lengths Lmin through Lmax. Suppose we have a

statistic T (J) available to help us decide whether an interval J ⊂ I contains a signal s ∈ F

with supp(s) ≈ J . Assume big values of T (J) are evidence against the null hypothesis H0.

Then we could imagine scanning the data, by calculating T (J) for every possible interval

J ∈ J. To make a decision based on the values of these statistics we would need to put the

comparisons on a common statistical scale. If the distribution of T (J) is independent of J

under H0, we could design a test that would reject H0 if

T ∗ := max
J∈J

T (J)

exceeds a threshold. Otherwise, if we knew or could estimate the distributions of T (J),

∀J ∈ I, under H0, we could base the decision on comparing P -values; e.g., reject H0 when

T ∗ := min
J∈J

PH0 (T (J) ≥ Tobs(J)) (4.2)

is small enough, where Tobs(J) is the observed value of T (J). In both cases, we base our

decision on the statistic T (J) that gives us the strongest evidence against H0. Postponing

the important question of whether such a procedure would be good at all from a statistical

point of view, we will instead focus on the computational aspect.
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Since we are interested in the situation Lmin � M , Lmax � M , we would have about

(Lmax − Lmin)M intervals to consider, possibly causing the “brute force” test we just de-

scribed to be computationally prohibitive unless T (J) is very simple, such as in the method

of matched filtering which we will discuss in Section 4.2.

4.3.1 Detection of intervals with elevated mean

Scanning every possible interval, as in (4.2), is perhaps an overkill. This could especially be

the case if the statistic T (J) is adaptive, in the sense, that it does not rely on the interval

J matching the unknown signal’s support exactly.

Instead, we might consider a smaller set of intervals that try to approximate every

possible interval in J. In [10], Arias-Castro, Donoho, and Huo show that any interval can

be approximated by a set of intervals that are short chains of dyadic intervals. They use

this fact to design a near-optimal detection strategy for solving the following problem of

detecting intervals of elevated mean: Let the data be of the form

yk = λ · 1{a≤k<b} + zk, k = 0, . . . ,M − 1;

where z = (zk) is a vector of i.i.d. standard normal random variables, and where the end-

points a, b of the interval, obeying 0 ≤ a < b ≤ M − 1, and the signal amplitude λ > 0 are

assumed to be unknown. They studied the conditions of asymptotic minimax detectabil-

ity (see Section 9.2 for a definition of these terms). Applying the GLRT principle for this

problem, we get the statistic

X∗ = max
0≤a<b≤M

〈X, ξa,b〉,

where ξa,b(k) = 1{a≤k<b}√
b−a . At the two extremes (i) b − a = M , and (ii) b − a = 1, we have

two classical hypothesis-testing problems: Under H0 all the Gaussians are i.i.d. with mean

zero, and the alternative H1 is either

(i) all the Gaussians have a common mean greater than zero; or

(ii) one of the Gaussians has a positive mean, while the others have mean zero. I.e., there

is a “spike” at an unknown location in the data stream.

The thresholds of asymptotic minimax detectability for the signal level λ = λM as M →∞,
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are

(i) λM ∼ 1/
√
M, and (ii) λM ∼

√
2 log(M).

As the authors point out, it appears to be most natural to work with the normalized am-

plitude A = λ/
√
b− a for studying the threshold of detectability. We immediately see,

because of (ii), that A cannot grow slower than
√

2 log(M). The authors show that if A

grows slightly faster, or A =
√

2(1 + η) log(M) for any η > 0, the GLRT is asymptoti-

cally powerful. This is the optimal behavior, since if A grows like
√

2(1− η) log(M), every

sequence of tests is asymptotically powerless. The number of intervals is O(M2) and a

straightforward implementation would require O(M2) operations to calculate X∗. How-

ever, using an idea considering a smaller set of extended dyadic intervals, the authors show

that there is an algorithm that requires O(M) operations that is asymptotically powerful

if A =
√

2(1 + η) log(M), achieving the same asymptotic statistical performance as the full

GLRT.

The framework we are about to describe relies partly on their set of extended dyadic

intervals which we will describe next.

4.3.2 Extension of dyadic intervals

We will adopt from [10] the definition of the set of extended of dyadic intervals and the

definition of the measure of affinity between two intervals.

Definition 2. The measure of affinity between intervals I and J is defined by

ρ(I, J) =
|I ∩ J |√
|I|
√
|J |

.

Obviously 0 ≤ ρ(I, J) ≤ 1, with ρ(I, J) = 1 if and only if I and J are identical, and 0 if

their supports are disjoint. We will consider dyadic intervals contained in I, just as we did

in the construction of the multiscale chirplets:

Definition 3. If M = 2J , a dyadic subinterval is an interval of the form,

Is,k = {k2s, . . . , (k + 1)2s − 1},

where 0 ≤ s ≤ J and 0 ≤ k ≤ 2J−s − 1. The cardinality of an interval Is,k is |Is,k| = 2s.
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The next definition, taken from [10], describes a method of chaining together dyadic

intervals in a systematic way.

Definition 4 (l-level extension). We say that the interval Jl is an l-level extension if it is

constructed in the following way:

1. Start from a base J0 which is either a dyadic interval Is,k or the union of two adjacent

dyadic intervals at the same scale, Is,k and Is,k+1 where k is odd (if k is even, then

the union would be equal to a dyadic interval at scale index s+ 1).

2. At stages m = 1, . . . , l extend Jm−1 to Jm by attaching a dyadic interval of length

2−m|Is,k| at either or both ends of Jm−1 or by doing nothing so that Jm = Jm−1.

The collection of all l-level extensions of the dyadic interval I is denoted by Jl[I] and the

collection of all l-level extensions is denoted by JM,l.

Figure 4.1 shows an example of l-level extensions for l = 1 and the base interval J0 = I1

being either a dyadic interval of length 2s or a union of two dyadic intervals.

The set of extended dyadic intervals provides a very good approximation of the set of

all intervals as the following lemma from [10] describes:

Lemma 2.

#JM,l ≤M4l+1

ρ∗M,l = min
I∈I

max
J∈JM,l

ρ(I, J) ≥ 1/
√

1 + 2 · 2−l.

This lemma tells us that using a small set of extended intervals, we can approximate any

interval in I well.

For the problem we have in mind, we focus on signals with support length in the range

[Lmin, Lmax]. Therefore, we only need to consider a small set of scales for the dyadic intervals

that we wish to extend. The number of dyadic intervals of length 2s isM/2s and the number

of l-level extensions per dyadic interval does not exceed 2·4l. The number of l-level extensions

for dyadic intervals of length 2s does therefore not exceed M · 22l−s+1.
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4.4 Framework for Signal Detection When Support is Un-

known

Lets consider the detection problem (4.1). Assume T1(J) and T2(J) are two statistics for

determining how likely it is that a signal s ∈ F is contained in the subinterval J . The scales

of the dyadic intervals to consider are determined by Lmin and Lmax. A possible choice is

the set of dyadic intervals of length 2s where s = blog2 Lminc − 1, . . . , dlog2 Lmaxe. This

ensures that in any interval of length L, Lmin ≤ L ≤ Lmax, we could find a dyadic interval

from this set whose length is roughly equal to L/2. The general description of the method

is as follows. Fix the maximum extension level lmax. Then the procedure is based on two

separate stages:

1. First stage: For each dyadic interval Is,k we wish to consider, calculate T1(Is,k) and

“tag” Is,k as promising if the value exceeds a predescribed threshold. Construct a list

of promising intervals J = {J1, . . . , Jn}. Note that n could be random; it depends on

how we tag intervals as promising.

2. Second stage: Extend the promising intervals:

(a) Take I ∈ J .

(b) For l = 1, · · · , lmax, calculate T2(J) for each J ∈ Jl[I].

3. Decision: Use the results from second stage to decide whether the data stream contains

a signal. This would have to be done by some multiple comparison procedure since the

decision has to be based on values of many statistics. A possible approach would be

to take the minimum P -value in the second stage and compare it to the distribution

of the minimum P -value under H0 like we did for the BP test.

Remarks:

• T1 and T2 could be quite different and not necessarily lead to equally powerful tests if

the signal support was known. The purpose of the first stage is to weed out as much

of the data stream that “obviously” appears to contain only noise, and leave only the

part that could potentially include a signal. The emphasis here is more on the speed

of computation rather than detection sensitivity. If T1 allows us to weed out with
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high confidence, say, 90% of the dyadic intervals, this could be a considerable gain in

speed. It could allow us to spend greater time applying a more expensive and sensitive

detection procedures on the 10% of the intervals that are left. Whether this is possible,

and how simple T1 can be, depends of course on the set F of unknown signals.

• Tagging intervals in the first stage could be done by using P -values or a fixed threshold.

An interval J would be tagged if T1(J) has a P -value small enough, or its value exceeds

a threshold.

• If for some reason the null distribution of T1(Is,k) is not available, we could tag based

on the ordering of the observed value of the statistics. For each interval length 2s, we

would choose the number, qs, of intervals that will be tagged promising. The choice

of a suitable qs would typically need to be based on numerical simulations (Monte

Carlo). In order for the method to work well, the parameters (qs) need to be chosen

such that with overwhelming probability at least one dyadic interval with significant

overlap with the support of the signal is labeled as promising. The computational

resources at hand might put an upper limit on (qs). As a last resort, one could choose

(qs) close to this upper limit.

4.5 Two-Stage BP Test for Chirp Detection

Consider the detection problem (4.1) where F is a set of chirps. Calculating a multiscale BP

statistic for every possible interval in a long data stream might be prohibitively expensive

in practice. Instead we will introduce a two-stage BP test for chirp detection, based on the

framework described in Section 4.4. We design the statistics T1 and T2 based on the BP test

we discussed in the previous chapter. This provides us with rapid algorithms, adaptivity,

and flexibility.

4.5.1 Statistic for the first stage

The purpose of T1 is to weed out as much as possible of the data that appears to only

contain noise. Its design depends highly on how wildly the instantaneous frequency of the

chirps can change over their time support. We mention two choices which both allow for

rapid calculation of T1, but there could be other possibilities.
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Choice 1: Maximum Chirplet Coefficient. If the class of signals we wish to detect

consists of chirps whose frequency evolution is very smooth, we might have a chance of

identifying promising intervals by looking at the maximum chirplet cost on each interval:

T1(Is,k) = maximum chirplet cost on interval Is,k.

This would be the case when the second derivative of the phase is almost constant for a

considerable portion of the signal duration, causing the instantaneous frequency to change

almost linearly with time.

Choice 2: Monoscale Chirplet Analysis. When the chirps exhibit a more complex

structure, we could choose T1(Is,k) to be the value of the best path in a monoscale chirplet

graph whose topology is simple. To speed up computations, it is possible to reuse calculations

(see Section 4.5.4). The choice of scale depends on the class of signals we wish to be able to

detect. Instead of sticking to one scale, we could consider a few of them for more adaptivity.

4.5.2 Statistic for the second stage

In the second stage the search has been focused on relatively few candidate intervals. There-

fore, we can afford to apply more sophisticated methods. We will take T2 to be based on the

BP test for a multiscale chirplet graph. The discretization and allowable scales of chirplets

in the chirplet graph used for T2 could be made to depend on the length of the dyadic

interval being extended.

4.5.3 A sample configuration for the two-stage BP test

Here we provide a concrete example which will serve as the base for our numerical simulations

in Section 4.6.

The maximum extension level for the second stage is lmax = 1. Assume that using T1 in

the first stage we have tagged a dyadic interval Is,k as promising. Figure 4.1 shows all the

interval extensions for this dyadic interval. If k is even, the number of interval extensions is

4, and if k is odd, it is 8. In the second stage we would therefore need to calculate 4 or 8

different statistics T2.

Consider the intervals in part (a) of Figure 4.1. Then the chirplet graph topology for
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intervals I1 and I2 up to time t1,0 would be identical. Also, for I2 we would force any chirplet

path to have chirplets ending and starting at time t1,0. The same holds for intervals I1 and

I2 in part (b) of the figure. The portion of the chirplet graph from t1,0 to t1,1 would be

identical to the first half of the chirplet graph for interval I1.

The topology of the chirplet graphs for intervals I2 and I3 were taken to be identical

(these intervals are both equally long). The part of the chirplet graph for interval I4 from

t0,1 to t1,0 was taken to be identical to the graph for I3. The topology of the part of the

chirplet graph from t1,0 to t1,1 was taken to be identical to the part from t0,1 to t0,0.

Note that with this choice of chirplet graphs for the interval extensions we are making

the method somewhat asymmetric and not completely multiscale. For example, although

there is a chirplet path of length 1 for the base interval, every path for its extensions has

to constitute at least 2 chirplets. For the case when the base interval Is,k is doubled, the

paths on the intervals I2 and I3 have to have at least 3 chirplets, and the paths for I4 have

to have 4 chirplets or more.

The main reason for this choice is to minimize computational burden since this way we

can reuse the chirplet costs for the base interval and our computation of the Best Path. If

computational cost is not of much concern it would be possible to get around the restrictions

these choices impose.

4.5.3.1 Speculations about computational cost

Assume qs is the fraction of dyadic intervals of length 2s that are tagged as promising in the

first stage so the total number of tagged intervals is therefore

qsM/2s.

For a data sequence of length N , we would typically have an upper bound on the total

computational complexity of the BP test of the order N2(logN)2. The cost is dominated

by the calculation of the chirplet coefficients, and this is the order of the complexity for a

dense chirplet graph including every possible scale. Thus, the complexity of applying T2 to

all the extended dyadic intervals of length N = 2s does not exceed

O(qsM/N ×N2(logN)2) = O(qsM2ss2).
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If we are in a situation where N � M , the computational cost of the second stage for the

BP test does not exceed approximatelyM . The first stage uses a cheaper statistic and could

be configured so its computational cost does at least not exceed that of the second stage.

Recall that the cost of applying the method of matched filtering with a template bank

of cardinality K is about K ×M logM . If our considerations above hold, we expect the

two-stage BP test to be much faster than even a moderately sized template bank. This is,

in fact, what we have experienced empirically.

4.5.4 Speeding up computations for the two-stage BP test

It is possible to reuse calculations to speed up the computations of the two-stage BP test

statistic. Consider a dyadic interval I that has been tagged as promising and we wish to

extend. If the same discretization and chirplet graph is used in all of the cases, then we

could reuse calculations when calculating the best path for the different intervals under

consideration. First of all we could reuse the cost of calculating the chirplet cost. Recall

that this is the dominant factor in the computational cost. Secondly, the nature of the BP

algorithm also allows us to reuse a lot of calculations. If we fix a starting point in time, t0,

and march forward, the algorithm will provide us with the value of the Best Path starting at

time t0 to any vertex at time greater than t0. Assume we want the values of the Best Paths

starting at time t0 and ending at times t1, . . . , tk. Further assume that chirplets in the path

can end at these times and t0 < t1 < . . . < tk. Then we can find the value of all the Best

Paths starting from t0 to t1, . . . , tk, respectively, with only one sweep of the BP algorithm

through the chirplet graph. The cost of the algorithm is the same as for calculating the Best

Path from t0 to tk, the Best Paths at the intermediate times come for free.

4.6 Numerical Simulations

Since one of the targeted applications for our detection procedures is the search of gravita-

tional waves, we choose to demonstrate the two-stage BP test in a setup which is meant to

resemble the situation in the LIGO detectors. This is of course an idealistic academic model

of the real situation, and the ultimate test would be to apply our methodology to real data.

However, we hope that these results will show that these tests are powerful and have good

potential for being useful in practical applications. The code developed for generating these
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Figure 4.1: The promising interval I1 and its extensions
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results is part of Chirplab, which is publicly available (see Section 10.1).

4.6.1 Sampling model

To show the connection between the discrete model we use for numerical simulations and a

possible data acquisition process, we present a classical sampling model for situations where

analog measurements are converted into discrete sequences [64]. We imagine we have an

apparatus which senses a continuous-time data stream

xc(t) = s(t) + Z(t),

where s(t) is either an unknown chirping signal of finite time-support or identically zero, and

Z(t) is a stationary Gaussian process with mean zero and a known power spectrum P (ω).

We also assume that, in the frequency-domain, most of the energy of s(t) is contained

in a frequency band [−Ω,Ω] for some positive number Ω. Figure 4.2 shows a diagram of

the sampling model we are about to describe. First the signal xc(t) is fed into an analog

antialiasing filter with a frequency response Ha(ω). This is to remove noise in the higher

frequency range which otherwise, after sampling, would be aliased into the low-frequency

range. To prevent this aliasing, we need to force the input signal to be bandlimited to

frequencies below one-half of the sampling rate. We choose the sampling interval T based on

the frequency support of the signal s(t), that is, according to Nyquist, to satisfy 2π/T ≥ 2Ω.

Therefore, ideally, we might want an anti-aliasing filter with a frequency response

Ha(ω) = 1|ω|≤π/T (ω).

But sharp analog filters are difficult and expensive to implement. In practice, the signal can

be over-sampled at, say, the sampling interval T ′ = T/D, where D is a positive integer. The

antialiasing filter filter is designed to have a gradual cutoff with significant attenuation at

the frequency π/T ′. If we assume that Ha(ω) = 1 for ω ∈ [−Ω,Ω] and zero outside of the

band [−π/T ′, π/T ′] (although, in reality, it would only be approximately zero in that band),

the output signal from the antialiasing filter is

xa(t) = s(t) + Za(t),
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where Za(t) is a stationary Gaussian process with mean zero and the power spectrum

Pa(ω) = |Ha(ω)|2P (ω).

Then the sampled sequence resulting from the analog-to-digital conversion (A/D conversion)

is

x[n] = xa(nT ′) = s(nT ′) + za[n],

where za[n] is a discrete-time Gaussian process with mean zero and the power spectrum

P da (ω) = 1/T ′Pa(ω/T ′), for ω ∈ [−π, π] (note that this power spectrum is 2π-periodic

since now we have a discrete-time signal). Finally we can reduce the sampling rate by

using a sharp antialiasing digital filter with a frequency response Hd(ω) with cutoff at π/D

followed by downsampling by a factor D. Ideally, Hd(ω) = 1|ω|≤π/D(ω), in order to leave

the deterministic part of the signal x[n] unchanged. In that case, the resulting signal is

y[n] = s(nDT ′) + z[n] = s(nT ) + z[n],

where z[n] is a discrete-time Gaussian process with mean zero and the power spectrum

P d(ω) =
1
D
|Hd(ω/D)|2P da (ω/D) =

1
DT ′
|Hd(ω/D)|2Pa(ω/(DT ′))

=
1
T
|Hd(ω/D)|2|Ha(ω/T )|2P (ω/T ), ω ∈ [−π, π].

Using ideal filters we get

P d(ω) =
1
T
P (ω/T ), ω ∈ [−π, π].

If we know the power spectrum of the noise in the continuous-time data stream xc(t), the

above expression gives us the power spectrum of the noise in the sampled sequence which

can then be used for constructing the covariance for the discrete-time noise process. The

autocorrelation for the discrete random sequence z[n] is

R[m] := E(z[n]z[n+m]) =
1

2π

∫ π

−π
P d(ω)eiωmdω.
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−→
xc(t)

Antialiasing filter →
xa(t)

A/D conversion −→
x[n]

Antialiasing filter −→
xlp[n]

↓ D −→
y[n]

Figure 4.2: Sampling model for simulations for the two-stage BP test

The integral can be approximated by the trapezoidal rule giving us

R[m] ≈ 1
N

N/2−1∑
k=−N/2

P d
(

2πk
N

)
ei2π

km
N , (4.3)

for an even integer N . This gives a relation between the autocorrelation of the discrete-time

noise process z[n] and the power spectrum via the discrete Fourier transform. For simulation

purposes we can therefore simply generate the sequence y[n] directly. Below is a description

of how we simulated data based on this sampling model:

• We generated y[n] directly by simulated blocks of data, y[n], 0 ≤ n ≤ N − 1, where

N = 216 = 65, 536, unless specified otherwise.

• The sampling rate in the A/D conversion is 16, 384Hz (T ′=1/16,384 s).

• x[n] is downsampled by a factor D = 8 so the deterministic signal in the data is

effectively sampled at the rate 2, 048Hz.

• We assumed the frequency response of the antialiasing filters to be ideal.

• The colored noise is simulated as circular noise on each block of length N . (This

creates a slight disconnection between the sampling model and the simulated data but

makes the simulation process easier.)

Switching from bracket notation to subscripts, the data model for the simulated data is:

yk = λsk + zk, k = 0, 1, . . . , N − 1, (4.4)

where N = 216 = 65, 536, λ is a non-negative scalar, (sk) is a vector of equispaced time

samples of a real-valued chirp with support smaller than N , and (zk) is a real-valued noise

sequence sampled from a multivariate normal distribution N(0,Σ). Since we chose to simu-

late circular noise, the covariance matrix Σ is circulant and therefore diagonalizable in the
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Fourier basis. Thus, the noise is completely characterized by the eigenvalues, or power spec-

trum, P = (Pk)1≤k≤N , of the covariance matrix. We use (4.3) for the relationship between

the covariance of the simulated noise and the spectrum in the data model.

4.6.2 Noise model

The power spectrum in the model (4.4) is based on a fit to the LIGO-I one-sided power

spectral density given in [43]

S(f) = S0

[
(4.49f/fref)−56 + 0.16(f/fref)−4.52

+ 0.52 + 0.32(f/fref)2
]
, (4.5)

where fref = 150Hz. This fit is only valid for frequencies above fs = 40Hz, so to mimic

high-pass filtered data, we roll off S(f) below 20Hz. When calculating the BP statistics we

only search for paths in the region where frequency exceeds fs. For our simulation purposes,

the exact value of the scaling factor S0 does not matter, since the test signals s = (sk) will

be normalized with respect to the noise spectrum. If we scale the noise spectrum, the test

signal would be scaled with the same factor. Figure 4.3 shows a plot of the noise curve the

power spectrum was sampled from; again, the scale on the y-axis does not matter. The

highest frequency index, k = N/2, corresponds to the frequency f = 1, 024Hz in the power

spectral density S(f).

4.6.3 Definition of signal-to-noise ratio (SNR)

We will use the LIGO convention of the definition of SNR. For a real-valued signal s = (sk),

written as a column vector, the SNR for the data yk = λsk + zk as described above is:

SNR =
√

(λs)TΣ−1(λs) = λ
√
sTΣ−1s.

If we assume the signal s to be normalized such that sTΣ−1s = 1, then the SNR is simply

equal to the signal level λ. Note that if we whiten the data, by multiplying both sides of

equation (4.4) by Σ−1/2, we get the equivalent data model

ỹk = λs̃k + z̃k, k = 0, 1, . . . , N − 1,
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Figure 4.4: Simulated BBH coalescence with total mass M = m1 +m2 = 45M�

where ỹ = Σ−1/2y, s̃ = Σ−1/2s, and z̃ = Σ−1/2z ∼ N(0, I). Then the normalization

sTΣ−1s = 1 above is equivalent to taking ‖s̃‖2 = 1 for the transformed data. A com-

mon definition of SNR for the data model with the white noise is ‖λs̃‖/
√
N , so the LIGO

convention for SNR differs by a factor 1/
√
N .

4.6.4 Test signals: Simulated gravitational waves

Since we are trying to mimic LIGO data, we tested our methods using simulated gravitational

wave signals. Detailed description of how these signals were constructed can be found in

Appendix E. These test signals depend on three parameters, (m1,m2, a), which determine

the shape and effective support of the signal 1. m1 and m2 are the masses of two rotating

bodies (measured in units of solar mass M�), and a is a so-called spin parameter. The total

mass of the system is M = m1 +m2.

Three different test signals were chosen with the following parameters (i) (m1,m2, a) =

(22.5, 22.5, 0.7), (ii) (m1,m2, a) = (15, 15, 0.7), and (iii) (m1,m2, a) = (10, 10, 0.7), yielding

signals with three different support lengths. Figures 4.4, 4.5, and 4.6, show plots of these

signals.
1By effective support, we mean the part of the signal which is oscillating higher than 40 Hz, since below

that frequency the noise is overwhelming.
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4.6.5 Number of simulations

Number of simulations for BP test and known support: Since the support of the

signals are different we used chirplet graphs of different time-supports for each case, tailored

to each of the signals (i), (ii), and (iii).

• For each graph length, we randomly sampled 100,000 realizations of noise.

• For each signal and each signal level, we sampled the data model 10,000 times in order

to compute detection rates.

Number of simulations for unknown support (two-stage BP): The same statistical

procedure was performed on every realization.

• We randomly sampled about 150,000 realizations of circular stationary noise vectors

of length 65,536 and performed the two-step BP on it in order to estimate a minimum

P -value distribution (see description below).

• For each signal and each signal level, we sampled the data model 1,000 times in order

to compute detection rates.

4.6.6 Configuration for the two-stage BP test

The first step in the two-stage BP method consisted of calculating the BP statistic on all

dyadic intervals of lengths L1 = 27, L2 = 28, and L3 = 29, using a monoscale chirplet graph

GI . This choice of lengths configures the test to detect signals of supports 128 through 1024,

after the extension. The intervals corresponding to about 10% of the most extreme statistics

were tagged as promising. That is, 50 for L1, 30 for L2, and 12 for L3. Then every tagged

interval was extended for extension level ` = 1 and a multiscale BP statistic calculated for

each interval extension. Let GII(L) be the set of chirplet graphs for the extensions for a

tagged interval of length L. We used different configurations of GII(L) for different values of

L. The configurations for GI and GII(L) can be found in Appendix D in a format suitable

for Chirplab (see Section 10.1).

Decision rule: The decision rule was based on the statistic for minimum P -value consid-

erations for the value of the statistics in GII(L). We compared the values of statistics which
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were calculated for the same “seed” interval length L and chirplet graph topology in GII(L),

and took the largest one. This gave us a vector V of statistics. The decision rule was based

on estimating the P -value of every entry in V and picking the smallest one, Pmin. Then we

compared Pmin to an empirical null distribution for this variable.

4.6.7 Results from simulations

We now explore the empirical performance of the detection methods proposed in this paper.

To this end, we have developed ChirpLab, a collection of Matlab routines that we have made

publicly available ( see Appendix 10.1).

4.6.7.1 Two-stage BP test vs. BP test which assumes support is known

To investigate the price the two-stage BP test pays for not knowing the support of the

unknown signal, we compared its performance with the BP test. Figures 4.7 and 4.8 show

a comparison of the two methods for two different test signals. In each case we generated a

data sequence of length 65, 536 and placed the signal so that the time index where it starts

is at 10,000. The two-stage BP test was applied to the whole data stream while the BP test

was applied to the portion of the data stream where the signal had its support.

The plots of the detection probabilities show that the price the two-stage BP test pays

for not knowing the support in advance is low - or roughly, to achieve the same performance

as the BP test which knows where to look in the data stream, the SNR needs to be about

10% higher. If we believe that the BP test is a powerful method for detecting unknown

chirps for known support, this is a good indication that the two-stage BP test is performing

very well.

4.6.7.2 Performance of two-stage BP test as length of data increases

It is important to have a feeling for how much the performance of the two-stage BP test

degrades as the length of the data stream increases. Longer data provides more places for

a signal to hide and our method would lose power. Figure 4.9 shows a comparison of the

method for two different data lengths: M = 216 = 65, 536 and M = 217 = 131, 072. The

only difference in the configuration of the method for M = 217 is that we doubled the

number of intervals tagged as promising in the first stage. As a result, analyzing the data

of length M = 217 is twice as expensive, in terms of computational cost, as analyzing the
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Figure 4.7: Comparison of performance for the BP test assuming the support to be known and
two-stage BP test for the BBH coalescences with total mass M = 30M�. (a) Detection probability
as a function of SNR. The probability of Type I error is fixed at 1%.
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Figure 4.8: Comparison of performance for the BP test assuming the support to be known and
two-stage BP test for the BBH coalescences with total mass M = 45M�. (a) Detection probability
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Figure 4.9: Comparison of performance of two-stage BP for the data lengths M = 216 = 65, 536
and M = 217 = 131, 072. The test signal is a gravitational wave from a BBH coalescence with total
mass M = m1 + m2 = 30M�. (a) Detection probability as a function of SNR. The probability of
Type I error is fixed at 1%. (b) Plots of ROC for different values of SNR

data of length M = 216. The plots show that there is hardly any difference in performance

as the length of the data is increased.

4.6.7.3 Detection of a sinusoid with unknown support and frequency

Suppose the unknown signal is a monofrequency local sinusoid with an unknown frequency

and phase offset. It is windowed by a smooth function of finite support N ∈ {256, 384, 512}.

Let the set of frequencies be ω ∈ ΩN := {2πm : m ∈ {b40/2048Nc, . . . , N/2−1}}. Then we

compare the two-stage BP test with the GLRT in Section 4.2 local sinusoids as the bank of

templates:

{f : fk = 1IN (k)eıωNk/N , IN is an interval of length N ∈ {256, 384, 512}, and ωN ∈ ΩN}.

Figures 4.10, 4.11, and 4.12, show comparisons of the two-stage BP test with the template

bank of local sinusoids. The test signals were local sinusoids of lengths N = 256, 384, 512,

and with frequencies ω = 2π · N/4. As we see, the two-stage BP test does surprisingly

well at detecting these local sinusoids compared to a method that knows the signal form in

advance.
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Figure 4.10: Comparison of performance for GLRT and two-stage BP test for sinusoid of support
N = 256. (a) Detection probability as a function of SNR. The probability of Type I error is fixed
at 1%. (b) Plots of ROC for different values of SNR
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Figure 4.11: Comparison of performance for GLRT and two-stage BP test for sinusoid of support
N = 384. (a) Detection probability as a function of SNR. The probability of Type I error is fixed
at 1%. (b) Plots of ROC for different values of SNR



80

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

D
et

ec
tio

n 
pr

ob
ab

ili
ty

Sinusoid of support N=512, α=0.010

 

 

2−stage BP
GLRT

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

D
et

ec
tio

n 
pr

ob
ab

ili
ty

N = 512

 

 

BP, SNR=8.0
BP, SNR=9.0
BP, SNR=10.0
GLRT, SNR=7.0
GLRT, SNR=8.0
GLRT, SNR=9.0

(a) (b)

Figure 4.12: Comparison of performance for GLRT and two-stage BP test for sinusoid of support
N = 512. (a) Detection probability as a function of SNR. The probability of Type I error is fixed
at 1%. (b) Plots of ROC for different values of SNR

4.6.7.4 Comparison of two-stage BP test with matched filtering

Here we show a comparison of the performance of the two-stage BP test with a GLRT, or

matched filtering, for simulated gravitational waves of binary black hole coalescences.

Three separate template banks were designed for detecting the signals: BANK-1 for

signal (i), BANK-2 for signal (ii), and BANK-3 for signal (iii).

• BANK-1: Templates withm1,m2 ∈ [20.5, 30.4], a ∈ [0.18, 0.98]. Discretization spacing

for the masses was ∆m = 0.9, and for the spin parameter ∆a = 0.06. This gave a

bank of 1014 templates.

• BANK-2: Templates withm1,m2 ∈ [13.5, 20.4], a ∈ [0.18, 0.98]. Discretization spacing

for the masses was ∆m = 0.3, and for the spin parameter ∆a = 0.16. This gave a

bank of 1800 templates.

• BANK-3: Templates with m1,m2 ∈ [9.5, 13.4], a ∈ [0.18, 0.98]. Discretization spacing

for the masses was ∆m = 0.12, and for the spin parameter ∆a = 0.4. This gave a

bank of 1800 templates.

Every possible integer time translation of each template was correlated with the data stream

as described in Section 4.2.
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Comment about the “effective dimensionality” of the template banks: Before we

proceed to the comparison, it is important to point out that the templates within each bank

are highly correlated. Each bank searches over a very small subset in the space of chirps,

and comparing the performance of matched filtering with that of two-stage BP must be

considered unfair. The latter method is designed to search over a broad set of chirps while

the first is targeted at a small space of parameterized functions.

To attempt to reveal something about the “effective dimensionality” of the template

banks, we will compare them with a template bank designed for searching for sinusoids.

Consider the following data:

yk = λsk + zk, k = 0, . . . , N − 1,

where z = (zk) is a sequence of i.i.d. N(0, 1) random variables, λ ∈ R, and the unknown

signal s = (sk) belongs to a class of signals, F . We also assume the support of sk being

known and approximately equal to N . The goal is to test, based on y = (yk),

H0 : λ = 0 vs. H1 : λ 6= 0.

We consider the case when the data length is N = 512 and compare two possible sets of

functions F :

(i) F1 = the set of normalized templates in BANK-1.

(ii) F2 = {f : f(t) = cos(ωt+ φ), t = k/N, k = 0, . . . , N − 1, ω ∈ Ω512, φ ∈ R}.

For the comparison we will use the GLRT statistic

T = max
f∈F

|〈y, f〉|2

‖f‖2
,

and reject H0 for large values of T . The norms of the test functions in case (ii) are indepen-

dent of the phase offset φ, making the GLRT statistic equivalent to

T = max
ω∈Ω512

|〈y, eıωt〉|2

N/2
.

Figure 4.13 shows histograms of T under H0 for the two choices of F . Each histogram

is based on 10,000 samples of the data vector y = (yk) under H0. The typical values of T
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Figure 4.13: Comparison of histograms under H0 for GLRT tests for different set of templates.
Each histogram was generated using 10,000 realizations of white noise. (i) F is the set of templates
in BANK-1, (ii) F is a set of sinusoids.

for case (i) are considerably smaller than for (ii); for example, the ratio of the mean of T for

(ii) versus (i) is about 2. To control the tests at the same significance level, the threshold in

case of (ii) needs to be higher. The difference lies in that dimensionality of F . Even though

the number of templates in BANK-1 is |F1| ≈ 1000, and greater than the approximately

250 orthogonal sinusoids in case (ii), these test functions are highly correlated. Note that

F2 is a small subset of the class of functions the BP test is designed to find. Therefore, we

expect the performance of the GLRT with F = F1 to be considerably better than that of

the BP test when searching for signals restricted to BANK-1. The same holds for BANK-2

and BANK-3.

Figures 4.14, 4.15, and 4.16, show comparisons of performance for the two detection

methods. The position of the signals was always placed around index 10,000 in the data.

The SNR needs to be about 40% higher for the two-stage BP to achieve the same detection

rate as matched filtering. It is important to point out that the exact same two-stage BP test

was used for detecting all of the three signals, while a suitable template bank was chosen

for each signal which makes the comparison ever more unfair.

4.6.7.5 Computational cost

Performing the two-stage BP test for realization, i.e., block of length M = 216 = 65, 536,

took about 20 seconds on a single processor on a 3.0GHz Mac Pro machine. For our sampling
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Figure 4.14: Comparison of performance for matched filtering and two-stage BP test for the BBH
coalescences with total massM = m1+m2 = 45M�. The set of templates is BANK-1. (a) Detection
probability as a function of SNR. The probability of Type I error is fixed at 1%. (b) Plots of ROC
for different values of SNR

model, the original data was sampled at 16kHz and downsampled by factor 8. Therefore,

the original data segment would have been of length 219 = 524, 288, which corresponds to

32 seconds. This indicates that this procedure has the potential of being applied to data at

these sampling rates in real-time on a single processor.
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Figure 4.15: Comparison of performance for matched filtering and two-stage BP test for the BBH
coalescences with total massM = m1+m2 = 30M�. The set of templates is BANK-2. (a) Detection
probability as a function of SNR. The probability of Type I error is fixed at 1%. (b) Plots of ROC
for different values of SNR
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Figure 4.16: Comparison of performance for matched filtering and two-stage BP test for the BBH
coalescences with total massM = m1+m2 = 20M�. The set of templates is BANK-3. (a) Detection
probability as a function of SNR. The probability of Type I error is fixed at 1%. (b) Plots of ROC
for different values of SNR
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Chapter 5

Estimation of Chirps by Chirplet
Path Pursuit

This chapter considers the problem of estimating chirps from noisy data. Suppose we have

noisy sampled data

yk = fk + zk, k = 0, . . . , N − 1; (5.1)

where the unknown vector f = (fk) consists of sampled values of an object of interest

f(t), t ∈ [0, 1], belonging to a class of functions F . We assume uniform sampling such that

fk = f(k/N), k = 0, . . . , N − 1. The vector z = (zk) is a zero-mean random sequence with

a known distribution, but not necessarily i.i.d. entries. In our setup, the set of signals F is

a nonparametric class of chirps.

Based on the observation y = (yk), we wish to recover f the best as we can. To measure

the performance of an estimator f̂ = (f̂k) quantitatively, we could use the popular mean-

squared error

MSE(f, f̂) = E

(
1
N

∑
k

(fk − f̂k)2)

)
.

Our new estimation procedure relies on similar ideas and methodology we used for the BP

test; i.e., chaining of local correlations of the data, using multiscale chirplets and the chirplet

graph. This allows us build a rapidly computable and flexible estimator. Later in Chapter 7,

we will show that our estimation procedures have theoretical optimality properties over a

rich nonparametric class of chirps.

We finish this chapter by demonstrating the method by numerical experiments using

simulated data and academic signals.
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5.1 Motivation by Gaussian Model Selection

Consider data of the form as in (5.1) and where z is a vector of zero-mean i.i.d. Gaussians

with variance σ2. Assume we model the objects of interest F by a collection {Fm,m ∈M}

of finite-dimensional linear spaces, where dm is the dimension of Fm. As the dimension dm

increases, we can say that the complexity of the models increases.

For each model m we consider the least-squares estimator f̂m, i.e., the solution to

min
f̃m∈Fm

‖y − f̃m‖2.

Since Fm is a linear space, this minimizer is equal to the projection of the data y onto Fm.

Denote the orthogonal operator for this linear projection by Pm. Then the quality or risk

of the estimator based on model m, as measured by the mean-squared error, is

E‖f − f̂m‖2 = E‖f − Pmy‖2 = E‖f − Pmf − Pmz‖2

= ‖f − Pmf‖2 − 2E [Re(〈f − Pmf, z〉)] + E‖Pmz‖2

= ‖f − Pmf‖2 + σ2 · dm,

since E [Re(〈f − Pmf, z〉)] = 0 and

E‖Pmz‖2 = EzT P TmPm︸ ︷︷ ︸
=Pm

z = σ2trace(Pm) = σ2 · dm.

An ideal estimation procedure would be the one that minimizes this risk. We see that the

error is a sum of two terms: the squared bias, ‖f−Pmf‖2, and the variance, σ2 ·dm. Finding

the best model is therefore a search for the best trade-off between the fit to the signal and

the complexity of the model. This is obviously beyond reach, since the bias term depends

on the unknown signal and is therefore not available to us. Instead we seek a data-driven

model selection procedure m̂ that is close to the ideal risk

inf
m∈M

E‖f − f̂m‖2.

This is a well-studied problem in the literature of Gaussian Model Selection (see for example

[18] and references therein). Most of the proposed methods for solving these problems fall
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under a class of penalized approaches; we seek to find the model m̂ which minimizes

‖y − f̂m‖2 + Λ(m),

where Λ(m) is a nonnegative function defined onM and somehow measures the complexity

of the model m. For our setup, model selection via penalization corresponds to penalized

maximum log-likelihood and have criteria have been used for decades. The most common

approach is

arg min
m∈M

‖y − f̂m‖2 + λ · σ2 · dm, (5.2)

where the parameter λ is either constant or depends on the sample size N . As we let λ

increase, this procedure prefers “simple” models of low dimensionality; as λ gets closer to

0 we approach the method of maximum log-likelihood, inviting the risk of overfitting the

data. Popular procedures such as Mallows’ Cp , AIC , BIC, and RIC [3, 40, 59, 71] are all of

the form (5.2) for different values of λ. Other similar approaches can be found in [13, 14, 17].

Solving (5.2) is in general NP -hard since it requires an exhaustive search over all the models.

Therefore, unless the models inM all have a very special structure (for example, canonical)

or if there are few models to consider, these procedures become virtually impossible to apply

in practice.

Consider the Gaussian linear regression problems of (i) estimating the parameter β ∈ Rp

and (ii) estimating Xβ, from the linear model

y = Xβ + z,

where y ∈ RN is a vector of observations, X is an N × p predictor matrix, and z ∼

N(0, σ2IN ). Then the model selection procedure (5.2) can be written as

arg min
β̃∈Rp

‖y −Xβ̃‖2 + λ · σ2 · ‖β̃‖`0 , (5.3)

where ‖β̃‖`0 := #{k : β̃ 6= 0}. As before, this problem is in general NP -hard unless X has

a very special structure 1. To overcome the computational difficulties, people have proposed

to relax the `0 norm to the `1-norm ‖β̃‖`1 . This is done, for example, in the lasso [81]; see
1An example where this problem can be solved in practice is when X has orthogonal column vectors.

This is discussed in Section 5.6.3.
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also the closely related Basis Pursuit [27] and [69]. This replaces (5.3) with a linear program

which can be solved in a rapid fashion thanks to progress in the field of convex optimization

(see, for example, [19]).

However, although these methods seem to work well in practice, not much is known

about their theoretical performance. Recently, Candés and Tao [24] introduced the Dantzig

Selector for estimating β in (5.3) in the case when p, the number of explanatory variables,

can be much larger than the number of observations N . This method is also based on

`1-regularization and is rapidly computable using linear programming. But unlike previous

methods, they also show that for design matrices X obeying a general property called a

uniform uncertainty principle and β sufficiently sparse, the risk of their estimator comes

within a factor log p of the ideal mean-squared error one would get when supplied with the

information of which entries in β are nonzero, and which are above the noise level. This

provides a practical and provably optimal estimation procedure.

Our estimation procedure will be based directly on (5.2). Thanks to the structure of the

models we use to fit the chirps, we can solve the optimization problem exactly in a rapid

fashion. Besides being practical, the estimation procedure has also very good theoretical

performance (see Chapter 7). Next section describes the estimation procedure in detail.

5.2 The Best Path Estimator

We will make a distinction between real-valued and complex-valued data. Assume we have a

chirplet graph G. Let W be a chirplet path in the graph and {cv} the collection of chirplets

on the path. Then in the case of complex-valued data we will consider estimators which are

functions of the form

f̃ =
∑
v∈W

αvcv, (5.4)

and in the case of real-valued data we will consider estimators of the form

f̃ =
∑
v∈W

1
2

(αvcv + α∗vc
∗
v), (5.5)

where {αv} is a set of complex scalars. Denote this class of functions by C. Define the

complexity functional

K(f̃ , f) = ‖f̃ − f‖22 + Λ(f̃) (5.6)
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where

Λ(f̃) = λ2N(f̃), N(f̃) := |W |, λ ∈ R+;

i.e., the complexity functional is a measure of trade-off between the fit between f̃ to the

data f versus the number of terms, N(f̃), in f̃ . As the parameter λ increases, the functional

prefers functions with fewer terms. In Chapter 7, where we study theoretical properties of

this estimator, we will take

λ2 = η2 · (1 +
√

2 logMN )2,

for some fixed η > 8, where MN is the number of chirplets in the graph. But for now the

reader should think about λ as being a fixed positive number, chosen by the user of the

estimator.

Given data y = f + z, our estimator f̂ is the minimizer of the empirical complexity

K(f̃ , y), or

f̂ = arg min
f̃∈C

K(f̃ , y). (5.7)

We call this estimator the Best Path Estimator.

5.2.1 Estimator for complex-valued chirps

Consider a fixed chirplet path W with the chirplets {cv : v ∈ W} normalized such that

‖cv‖ = 1, i.e., with |cv(t)| = 1/
√
|Iv| (here and below the norm ‖ · ‖ stands for the `2-norm).

For functions f̃ of the form (5.4), we have

min
(αv)
‖y − f̃‖2 = ‖y‖2 −

∑
v∈W
|〈y, cv〉|2,

for any data sequence y (see Section 6.2.3). This gives

K(f̃ , y) ≥ ‖y‖2 −
∑
v∈W
|〈y, cv〉|2 + Λ(f̃),

with equality when the coefficients αv in (5.4) satisfy

argαv = arg〈y, cv〉, (5.8)
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and

|αv| = |〈y, cv〉|, (5.9)

as is shown in Section 6.2.3. Thus,

min
f̃∈C

K(f̃ , y) = ‖y‖2 −

[
max
W

∑
v∈W
|〈y, cv〉|2 − λ2|W |

]
= ‖y‖2 −max

W

∑
v∈W

Cλ(v | y),

where we define the chirplet cost given the data y, for the chirplet indexed with v, by

Cλ(v | y) = |〈y, cv〉|2 − λ2.

Therefore, to minimize the complexity functional we can equivalently solve the optimization

problem

max
W

∑
v∈W

Cλ(v | y). (5.10)

Once we have the optimal chirplet path W ∗, our Best Path Estimator is

f̂ =
∑
v∈W ∗

α̂vcv,

where the α̂v is determined by (5.8) and (5.9). If {Iv : v ∈ W} is the partition of the time

axis for W ∗, this would give us a piecewise constant estimate of the amplitude, or envelope,

of the chirp, i.e.,

Â(t) =
∑
v∈W ∗

|α̂v| · 1Iv(t)/
√
|Iv|,

since the chirplets are normalized such that |cv(t)| = 1/
√
|Iv|. Also, the phase and the

instantaneous frequency of the optimal chirplet path could give us estimates for the phase

and first derivate of the phase of the unknown chirp.

From our discussion in Section 3.2 we know that we can solve (5.10) rapidly using the

shortest path algorithm.
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5.2.2 Estimator for real-valued chirps

For real-valued data we do not enjoy the same “luck” of being able to minimize the complexity

functional as simply as for the complex-valued case. However, we can still solve it exactly

in a similar way if we define the chirplet costs in the graph slightly differently.

Consider a fixed chirplet path W with the chirplets {cv : v ∈ W} and let P = {Iv : v ∈

W} be the corresponding partition of the time axis. We can write the function in (5.5) as

f̃(t) =
∑
v∈W

ρv · cos(θv(t) + θ0,v),

where θv(t) is the phase of the chirplet cv, and ρv, θ0,v ∈ R. As for the complex-valued case,

we have

min
(αv)
‖y − f̃‖2 =

∑
v∈W

min
αv
‖y − f̃‖2Iv =

∑
v∈W

min
ρv ,θ0,v

‖y − f̃‖2Iv ,

so we can handle each interval Iv separately. Think about θ0,v as fixed for now. Then we

have,

min
ρv
‖y − f̃‖2Iv = min

ρv
‖y‖2Iv − 2ρv〈y, cos(θv + θ0,v)〉Iv + ρv‖ cos(θv + θ0,v)‖2Iv

= ‖y‖2Iv −
(
〈y, cos(θv + θ0,v)〉Iv
‖ cos(θv + θ0,v)‖Iv

)2

.

Define the quantity

D(v | y) = max
θ0,v

(
〈y, cos(θv + θ0,v)〉Iv
‖ cos(θv + θ0,v)‖Iv

)2

.

There is an analytic formula for calculating D(v | y) and the argument θ0,v which maximizes

it. It uses as input the chirplet coefficient 〈y, cv〉; see Section 3.3.5 and Appendix A for

further discussion and details. The important point here is that the complexity of calculating

D(v | y) is of the same order as the computational complexity for calculating the chirplet

coefficients.

Analogous to the complex-valued case, let’s define the chirplet cost, given the data y,

for the chirplet indexed with v, by

Cλ(v | y) = D(v | y)− λ2.

Then, just as before, we can minimize the complexity functional by equivalently solving the
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optimization problem

max
W

∑
v∈W

Cλ(v | y).

Notice that except for the difference in the definition of the chirplet cost, the estimator has

the exact same form for complex-valued and real-valued data.

5.2.3 Approximate complexity functional for real-valued chirps

Consider the complexity function for real-valued data. If we restrict ourselves to estimating

chirps that are highly oscillating so their frequency support is away from frequency zero,

we can choose the chirplet graph to include only chirplets at large frequencies. In that case

we have an approximation for calculating D(v | y). Note that if the θ′v(t) is big enough for

every t ∈ Iv, we have

‖ cos(θv + θ0,v)‖2Iv ≈ |Iv|/2.

Then

D(v | y) ≈ max
θ0,v

2
|Iv|

(〈y, cos(θv + θ0,v)〉Iv)2 =
2
|Iv|
|〈y, exp(iθv)〉Iv |2

= 2|〈y, cv〉|2,

and the chirplet cost would be

Cλ(v | y) = 2|〈y, cv〉|2 − λ2.

5.2.4 Computing the estimator

The computation of the BP estimator consists of three independent steps:

1. Calculation of the chirplet costs Cλ(v | y).

2. Minimizing the empirical complexity functional; i.e., solving (5.10).

3. Building the estimate based on the solution to step 2.

The computational cost of the last step is almost negligible compared to the other two

steps since we can reuse the calculations of the chirplet coefficients to get the value of the

coefficients (αv) in the the linear combinations (5.4), (5.5), for the best chirplet path from
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step 2. In our discussion of the computational complexity of the BP test, we already argued

that the cost of step 1 is greater than the cost of step 2. In this case, the cost of step 2 is

even less than for the BP algorithm since we can use the simpler Shortest Path algorithm

which is described in Section 3.2. The computational cost of the BP estimator is essentially

equal to the cost of the chirplet transform.

5.2.5 A remark on imposing continuity of the phase

Note that the optimization problem does not require the phase to be continuous and on each

time interval we are estimating the phase offset locally. To force the phase to be continuous,

one could include a phase offset parameter in the chirplets and consider a phaselet graph

instead, where we would look for (near) continuous paths of piecewise quadratic phase

functions in a time-phase diagram, with regularity constraints to determine the topology

of the graph. For this bigger graph, the computational complexity would increase. Based

on our discussion in Appendix B on imposing phase continuity for the BP test, it is not

immediately clear how much it would improve the estimation in situations where the noise

is very strong. Besides that, the way we model the fit to the chirps introduces a discontinuity

in the phase due to the piecewise constant fit to the amplitude. We could get around that

by adding an extra step of estimating the amplitude of the chirp globally after we have an

estimate of the phase. See Section 5.5 for further discussion on global amplitude fitting.

5.3 Choosing the Roughness Parameter λ in the Complexity

Functional

The complexity functional our estimator is based on involves a parameter λ which controls

the trade-off between the complexity of the estimator and the goodness-of-fit to the data.

Although we know which value to use for attaining theoretical bounds, it does not necessarily

mean it is the best choice for practical applications.

A popular way to choose regularization parameters of this sort is to use a graphical tool

called the L-curve (see for example [44, 45]). To explain it, we will consider the well-known

Tikhonov regularization scheme for solving ill-posed problems. Let K be a linear operator
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and assume we observe the data y of the form

y = Kf + z,

where z is white noise and f is the object we want to recover. Then the estimate of f using

the Tikhonov regularization scheme would be the solution to the following optimization

problem

min
f
‖Kf − y‖22 + λ2ω(f)2, (5.11)

where λ is a specified regularization parameter and ω(f) measures some kind of "smooth-

ness" of the object f . In the continuous case, where f is a real-valued function on R, one

possible choice could be based on the second derivative of f , or ω(f) = ‖f ′′‖2.

The L-curve for the Tikhonov regularization problem would be the plot of the points

(ω(f̂), ‖Kf̂−y‖2) for all valid regularization parameters λ, where f̂ is the solution to (5.11);

i.e., the plot of the regularity of the estimate versus the residual norm. It turns out that

this curve very often has an L-shaped appearance, hence the name. For small values of

the residual norm, ω(f̂) tends to be big, and as it increases, ω(f̂) gets smaller. Therefore,

the plot displays the compromise between the minimization of these two quantities. For

regularization methods with a discrete regularization parameter λ the L-curve consists of

discrete set of points (an example is the Truncated Singular Value Decomposition (TSVD)

in the case of linear regression [44]).

The L-curve can also be used in our estimation problem to aid in choosing a good trade-

off between the goodness-of-fit of the model to the data and the complexity of the model.

In the case of the BP estimation procedure, the goodness of fit is the residual norm and the

complexity of the model is the number of chirplets in the estimator. Due to the Best Path

algorithm in Section 3.2 we have a fast way of calculating the best fit f̂L to the data, where

f̂L minimizes ‖y − f̂L‖2 over all paths with L chirplets. This allows us to plot the residual

sum of squares ‖y− f̂L‖2 against the model complexity L. We expect to see a “kink” in the

plot where the goodness of fit starts to improve slower with increasing L. The estimation

could then be based on the best chirplet path corresponding to a length L close to the kink.

To demonstrate this idea, we will show an example based on the data and configurations

in Section 5.7 for the noise level σ = 0.03. Figure 5.1 shows a plot of the squared error

‖f − f̂L‖2 against L for one realization of the noise. Notice that the error has a minimum



95

0 5 10 15 20 25 30 35
10

−2

10
−1

10
0

L : number of chirplets in path

S
um

 o
f S

qu
ar

ed
 E

rr
or

s

Figure 5.1: Plot of the sample squared error ‖f−f̂L‖2 for BP estimators of fixed number of chirplets
L

for a chirplet path of length L = 8. Of course we could never draw such a plot in practice.

Figure 5.2 shows a plot of KL := ‖y − f̂L‖2 + λL versus the length L. Note that the

complexity functional K from (5.6) is the minimum of this curve for the same choice of λ.

In this case the complexity functional would choose the same model as the oracle that could

plot the squared error. Finally, on Figure 5.3, we look at the plot of the residual sum of

squares ‖y− f̂L‖2 against the number of chirplets in the best path. Notice the characteristic

L-shape and the kink at L = 8, which for this realization of the noise corresponds to the

model which minimizes the squared error.

5.4 Extensions

Because of the familiarity to the BP test, many of the extensions discussed in Chapter 3

could apply for the BP estimator. We could follow up on the idea of local fit of chirplets to

the data and replace the chirplet costs in (5.10) by the costs proposed for colored noise and
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varying amplitude as explained in Section 3.3.

5.5 Refining the Estimate of the Amplitude

Since the estimated chirp based on the Best Path is a linear combination of chirplets, the

estimate could have infeasible discontinuities due to the piecewise constant estimate of the

chirp’s amplitude. This problem would not vanish if we instead used amplitude-modulated

chirplets, giving a piecewise polynomial estimate of the amplitude. Therefore, in cases

where we know the amplitude of the chirp is smooth and continuous, we propose splitting

the estimation procedure into two steps to get a smoother, and hopefully better, fit to the

amplitude. Suppose the unknown chirp is of the form A(t) exp(ıϕ(t)). Then the procedure

would be as follows:

Global amplitude estimation for the BP estimator:

1. Use the BP estimator to estimate the phase of the unknown chirp. This can be

done based on the instantaneous frequency of the chirplet path that minimizes the

complexity functional and the local maximum likelihood estimates of the phase offsets.

Call the estimate of the phase ϕ̂t. (As discussed in 5.2.5, this phase estimate could be

discontinuous).

2. Demodulate the data y using the estimate of the phase:

ỹt = yt · exp (−ıϕ̂t) = A(t) exp (ı(ϕt − ϕ̂t)) + z̃t,

where z̃t := zt · exp (−ıϕ̂t) = z̃0
t + ız̃1

t .

3. Estimate the amplitude a(t) from the demodulated data ỹt or Re(ỹt).

If ϕ̂t is a good estimate of the phase, we would expect the real part of the demodulated data

to satisfy the approximation

Re(ỹt) ≈ A(t) + z̃0
t .

Assume (zt) is a sequence of complex-valued white noise such that zt = z0
t + ız1

t with (z0
t )

and (z1
t ) being independent sequences of i.i.d. N(0, 1) varables. Then (z̃0

t ) is a sequence

of i.i.d. N(0, 1) random variables. There are many methods at our disposal for estimating
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smooth functions from data contaminated with white noise. Which method to choose de-

pends on the a priori information we have on the amplitude of the chirping signal. We will

discuss two possible choices: thresholding in a Fourier basis and spline smoothing.

5.5.1 Estimating the amplitude using thresholding in the Fourier basis

One possibility would be to use Fourier approximations. {em(t) := ei2πmt}m∈Z is an or-

thonormal basis of L2[0, 1], and we can decompose any function f ∈ L2[0, 1] using its Fourier

series

f(t) =
∞∑

m=−∞
〈f, em〉em(t)

where cm(f) := 〈f, em〉 =
∫ 1

0 f(t)e−i2πmtdt. The Fourier series defines a periodic extension

of f for all t ∈ R, and the decay of the Fourier coefficients |cm(f)| as m increases depends

on the regularity of this extension. To prevent the extension from having singularities at

t = k, k ∈ Z, f needs to be compactly supported in (0, 1) or f (l)(0) = f (l)(1), l = 0, . . . , l′

for l′ sufficiently large.

The linear approximation of f ∈ L2[0, 1] by the sinusoids of theM+1 lowest frequencies,

i.e., em(t) for m ∈ {−M/2, . . . ,M/2}, is

fM (t) =
M/2∑

m=−M/2

〈f, em〉em(t),

with the approximation error

‖f − fM‖2L2[0,1] =
∫ 1

0
|f(t)− fM (t)|2dt =

∑
|m|>M/2

|cm(f)|2.

We can quantify this approximation error based on the regularity of f . To distinguish

between the regularity of functions that are n times continuously differentiable, but not

n + 1 times, we consider the Sobolov differentiability [62]. Let s > 0 and define the space

Ws(R) of functions f ∈ L2(R) that are s times differentiable in the sense of Sobolev, i.e.,

whose Fourier transform satisfies

∫ ∞
−∞
|ω|2s|f̂(ω)|2dω <∞.
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It can be verified that if s > n + 1/2, then f is n times continuously differentiable. Define

Ws[0, 1] as the space of functions f ∈ L2[0, 1] that can be extended outside [0, 1] to functions

f ∈Ws(R). Then we have a classical approximation theorem (see, for example, [57]):

Theorem 1. Let f ∈ L2[0, 1] be compactly supported in (0, 1). Then f ∈ Ws[0, 1] if and

only if
∞∑

M=1

M2s−1‖f − fM‖2L2[0,1] <∞,

which implies ‖f − fM‖2L2[0,1] = o(M−2s).

It is straightforward to construct an estimator based on Fourier approximations. Let

the data be y[k] = f [k] + z[k], k = 0, . . . , N − 1 where (z[k]) is a sequence of i.i.d. standard

normal random variables and f [k] = fc(k/N), where fc ∈ Ws[0, 1]. Consider the discrete

Fourier basis {
gm[n] =

1√
N

exp
(
i2πmn
N

)}
0≤m<N

,

where for m ≥ N or m < 0, gm = gm′ where m′ = m mod N . Then a Fourier estimator of

f [k], using the M + 1 lowest frequencies would be

f̂M [k] =
M/2∑

m=−M/2

〈y, gm〉gm[k].

If we know the regularity exponent s, the estimate of the approximation error from Theo-

rem 1 can help us in choosing M . Since the estimator f̂M is simply a projection of the data

y onto a linear space of dimension M + 1, we can use the decomposition of the MSE of the

estimator into bias and variance term from Section 5.1:

E‖f − f̂M‖2`2 = ‖f − fM‖2`2 + (M + 1)σ2 ≤ C · M
−2s

N
+ (M + 1)σ2,

where the last inequality is based on Theorem 1 and C is some constant. Assume that

σ2 = 1. Taking

M ∼ N1/(2s+1)

makes the bias and variance term of the same order and gives the best bound. But since

we do not know the smoothness we would have to choose the parameter M adaptively; for

example, by adaptive thresholding where only the low frequency coefficients that exceed a
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threshold are kept and the other are set to zero.

Perhaps a more serious limitation of this method is that it is not suitable for cases when

the signal is non-periodic or does not have its support entirely within the data under consid-

eration. To deal with non-periodicity we review another well-known method for estimating

smooth functions; curve estimation using smoothing splines.

5.5.2 Estimating the amplitude using spline smoothing

Most of the following presentation of spline smoothing is based on the monograph by Green

and Silverman [42]. Suppose that t1, . . . , tn are points in an interval [a, b] satisfying a <

t1 < . . . < tn < b. Suppose we have observations y1, . . . , yn. Given any twice-differentiable

function f on [a, b], let S(f ;α) be the penalized sum of squares

S(f ;α) :=
n∑
k=1

(yk − f(tk))2 + α

∫ b

a

(
f ′′(t)

)2
dt,

where α is a positive smoothing parameter. Note that this is a functional of the form

described in Section 5.3. Here, the term
∫ b
a (f ′′(t))2 dt measures roughness of the function

f . A function g defined on [a, b] is a cubic spline if it satisfies two conditions:

1. g is a cubic polynomial on each of the intervals (a, t1), (t1, t2), . . . , (tn, b).

2. The first and second derivative of g are continuous on [a, b].

A natural cubic spline is a cubic spline whose second and third derivatives are zero at a and

b. It can be shown that for any given set of points (t1, z1), . . . , (tn, zn), with t1 < · · · < tn,

there exists a unique natural cubic spline interpolating them.

Interestingly enough, the minimizer of S(f ;α) is necessarily a natural cubic spline with

knots at the points tk. To see why this holds, take any curve f and let g be a natural cubic

spline with knots at the points tk and g(tk) = f(tk) for all k. The natural cubic spline

interpolant has the property of being the unique minimizer of
∫

(h′′)2 among all C2 curves

h that interpolate the data {(tk, f(tk))} (see [42]) and therefore
∫

(g′′)2 ≤
∫

(f ′′)2. Since∑n
k=1(yk − f(tk))2 =

∑n
k=1(yk − g(tk))2 we have

S(g;α) ≤ S(f ;α)

with equality only if f = g.
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Let’s switch to vector notation and write y = [y(t1), . . . , y(tn)] and f = [f(t1), . . . , f(tn)]

where f is a natural cubic spline. As shown in [42], the roughness penalty term
∫

(f ′′)2 can

be written as fTKf where K is a matrix only depending only on the knots t1, . . . , tn. In

vector notation we obtain

S(f ;α) = (y − f)T(y − f) + αfTKf ,

which has a unique minimum obtained at

f̂ = (I + αK)−1y. (5.12)

An algorithm due to Reinsch [66] can be used to determine the smoothing spline in

O(n) arithmetic operations. It uses the fact that it is possible to set up a system of linear

equations involving only band matrices to determine the second derivatives of the smoothing

spline at the knots tk.

Choosing the smoothing parameter α: We need an objective method for choosing the

smoothing parameter α for our estimation procedure. One of the most popular choices is

cross-validation, which in our case would be as follows:

1. Fix α.

2. For every l ∈ {1, . . . , n} take the observation (tl, yl) from the set of the data and use

the remaining data to estimate the curve. The estimate is the minimizer f̂ (−l)(t;α) of

the complexity functional

S(−l)(f ;α) :=
∑
k 6=l

(yk − f(tk))2 + α

∫ b

a

(
f ′′(t)

)2
dt.

3. Calculate the cross-validation score function

CV (α) = n−1
n∑
k=1

(yk − f̂ (−k)(tk;α))2.

4. Repeat steps 1 through 3 for different values of α and choose the value of α that

minimizes CV (α) for the spline smoother.



103
The term (yk − f̂ (−k)(tk;α))2 measures how well the estimator f̂ (−l)(t;α) predicts yk.

It appears that for every α we would need to solve n smoothing problems to calculate

CV (α). This would add at least an extra order of complexity to the method of smoothing

splines, but luckily this is not the case. If we write the matrix for the spline smoother in

(5.12) as

A(α) = (I + αK)−1,

it can be shown (see [42]) that

CV (α) = n−1
n∑
k=1

(
yk − f̂(tk)
1−Akk(α)

)2

, (5.13)

where f̂ is the spline smoother calculated from the full data set with the smoothing parameter

α and Akk(α) is the k-th diagonal element in A(α). There is an algorithm due to Hutchinson

and de Hoog [48] for finding the diagonal elements of the matrix A(α) that runs in O(n)

operations. As a result, since the Reinsch algorithm finds the values f̂(tk) inO(n) operations,

the cross-validation score CV (α) can be found in O(n) operations for each α.

5.6 Estimation of Chirps Using Tight Frames of Multiscale

Chirplets

Here we review Candès’ estimation procedure for chirps which was introduced in [20] and

was shown to be theoretically near-optimal over a wide range of chirps. The method is based

on thresholding in the best empirical tight frame of chirplets, which we will abbreviate to

TBCF. Based on noisy observations as in (5.1), the goal of the method is to adaptively select

a frame from a library of frames, in which is best to recover the unknown signal. Before we

give a precise description of the method, we will define the chirplet tight frames.

5.6.1 Tight frames of chirplets

In Cn, a tight frame is a collection of vectors {gk}k∈Γ with the property

∑
k∈Γ

|〈f, gk〉|2 = A · ‖f‖2,
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for some constant A > 0. Let the vectors {gk}k∈Γ be the columns of a matrix Φ. For A = 1,

this property can be expressed using matrix notation as

‖Φ∗f‖2 = ‖f‖2.

This isometry property provides a reconstruction formula from the frame coefficients {〈f, ϕk〉}k∈Γ:

f =
∑
k∈Γ

〈f, gk〉gk

(see [30, 57].) Note that the vectors gk may be linearly dependent and their number be

greater than n, the dimension of the space. Note that for a tight frame ΦΦ∗ = I.

The chirplet tight frames are made from a collection of vectors which are windowed

chirplets and are restricted to balanced recursive dyadic partitions (BRDPs) (see Defini-

tion 1). Let I be a dyadic inteval, I = [k2−j , (k + 1)2−j), tI = k2−j . Let ρ(t) be a smooth

cutoff function satisfying ρ(t) = 0 for t < −1/2, ρ(t) = 1 for t > 1/2, and ρ(t)2 +ρ(−t)2 = 1

for |t| ≤ 1. Define the dyadic window wε,ε
′

I , localized near I, such that

wε,ε
′

I = ρ

(
t− tI
ε

)
ρ

(
t− tI
ε′

)

is smooth. Define the cutoff parameter ηI = (εI , ε′I). Assume we are given a BRDP P. Then

for every ordered pair (I, I ′) of adjacent intervals, we choose the cutoff

ε′ = min(|I|, |I ′|).

Restricting us to BRPDs requires us to only consider four different windows per interval I.

Note from the properties of the cutoff function ρ, the collection of windows (wηII )I∈P obeys

∑
I∈P
|wηII (t)|2 = 1. (5.14)

Then the dictionary of multiscale chirplets is made out of functions

ga,I,n(t) =
1√
2|I|
· wηII (t)eı(aI t

2/2+πnt/|I|),

for all dyadic intervals I, cutoffs ηI , and sequences a = (aI). The parameter aI , or the slope
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of the chirplet, is restricted to a discrete set of values on each interval I. One possible choice

for slope discretization is

aI = ` · 2j · δj , ` ∈ Z, and |aI | ≤ B,

for some fixed B > 0 possibly depending on the smoothness of the phase of the chirps under

consideration. This choice was used in [20] for establishing theoretical results. Note the

frequency offsets of these chirplets are of the form bI = πn/|I|, for n ∈ Z.

If we suppose the signal is of length N , the number of distinct elements in the library

with this choice of discretization is

MN = O
(
N4/3

)
,

and the number of distinct tight frames is exponential in N .

Fix a sequence of slopes (aI)I∈P such that on each dyadic interval, every chirplet has

the same slope. Then the family of chirplets (ga,I,n)I∈P,n∈Z is a tight frame; for any signal

f we have ∑
n

|〈f, ga,I,n〉|2 =
∫
|f(t)|2|wηII (t)|2dt,

and from (5.14) we have ∑
I∈P

∑
n

|〈f, ga,I,n〉|2 = ‖f‖2.

Therefore we have the reconstruction formula

f =
∑
I∈P

∑
n

〈f, ga,I,n〉ga,I,n.

5.6.2 Thresholding in a library of tight frames

Suppose we have observations yk = fk + zk, k = 1, . . . , N , where (fk) is a signal and (zk)

is i.i.d. Gaussian white noise. Let L = {Φ1,Φ2, . . . ,ΦBN } be a library of tight frames of

chirplets. For a fixed Φ ∈ L and some function h, let θk[Φ] = 〈h, ϕk〉 and define the entropy

functional

EΛ(h,Φ) =
∑
k

min(|θk[Φ]|2,Λ), (5.15)
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for some parameters Λ. Let Φ̂ be the empirical best frame according to this entropy:

Φ̂ = arg min
Φ∈L

EΛ(y,Φ),

and define the hard-thresholding ητ (y) = y1{|y|>τ}. The estimator is then constructed as

follows:

1. Find the empirical best frame Φ̂ according to the entropy EΛ.

2. Apply hard-thresholding in the empirical best frame with threshold τ :

ŷI,n = ητ (yk[Φ̂]).

3. Reconstruct using the empirical best frame Φ̂ = {ga,I,n}:

ŝ =
∑

I∈P,n∈Z
ŷI,nga,I,n.

For theoretical purposes in [20], upper bounds on the performance of the estimator were

proved for the choice of parameters

Λ = t2 · σ2 · (1 +
√

2 log(MN ))2, τ =
√

Λ, (5.16)

where MN is the number of chirplets in the dictionary, σ2 is the variance of the white noise

and t > 4. These are not necessary the best choices in practice, since the choice of Λ could

tend to be a little bit conservative. Later in our numerical experiments we will use slightly

different choices for these parameters.

Although the empirical best frame needs to be found among exponentially many tight

frames, the search can be done rapidly. The cost of the search for dyadic intervals of every

possible scale 2−j , j = 0, . . . , log2N is at most of the order of N operations, while the

computational complexity of the chirplet analysis is O(MN logN), where MN is the total

number of chirplets in the dictionary. Since for a typical discretization (see Chapter 2), we

have MN = O(Nβ), for some β > 1, the total cost of calculating the estimator is dominated

by the chirplet analysis. The search algorithm is similar to the best-basis algorithm for

cosine packets [28] and for adapted bases of local cosines [83], and relies heavily on the
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entropy functional being additive. See [20] for details.

5.6.3 An interpretation of the entropy functional

Consider the data of the form (5.1) where the noise z = (zk) is Gaussian white noise such

that E|zk|2 = σ2. For the purpose of demonstration, we assume without a loss of generality

that the noise level is σ = 1. For a tight frame Φ with N rows and p columns, we have the

equivalent detection problem 2

Φ∗y = Φ∗f + Φ∗z,

which can be written as

yk[Φ] = fk[Φ] + zk[Φ], k = 1, . . . , p.

Define the complexity functional

K(y,Φ, θ) := ‖Φ∗y − θ‖2 + Λ · ‖θ‖`0

=
∑
k

[
|yk[Φ]− θk|2 + Λ · 1{θk 6=0}

]
,

If θk = 0, the k-th term in the sum equals |yk[Φ]|; otherwise it equals |yk[Φ]− θk|2, which is

minimized by θk = yk[Φ]. Let (Φ̂, θ̂) be the minimizer of K(y,Φ, θ). Then

K(y, Φ̂, θ̂) = EΛ(y, Φ̂).

Hence, we can interpret the entropy as a complexity functional which trades off the fit to

the data and the complexity of the fitted model as measured by the number of non-zero

frame coefficients. Note that if the frame vectors in Φ were orthonormal so that Φ∗Φ = IN ,

we would have

‖Φ∗y − θ‖2 + Λ · ‖θ‖`0 = ‖y − Φθ‖2 + Λ · ‖θ‖`0 ,

which is a functional of the same form as in (5.3). Therefore, as a side-note, we have

shown that for Gaussian linear regression model selection where the predictor matrix is

orthonormal, we can solve (5.3) rapidly.
2Recall that ΦΦ∗ = IN and therefore no information is lost since we can always go back to the original

model, making the two problems equivalent.
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5.7 Numerical Simulation

In this section we briefly explore the empirical performance of the BP estimator. We have

chosen to work with complex-valued data and white noise but could have performed sim-

ulations on real-valued data. We postpone the important investigations of the empirical

performance of the estimator in the case of real-valued data and colored noise for future

research. Based on our promising numerical results for the BP test in the case of colored

noise and real-valued data, we expect the estimation procedure to perform for the estimation

of highly oscillatory real-valued chirps.

5.7.1 The basic setup

We generated data of the form

yk = fk + zk, k = 0, 1, . . . , N − 1;

where (fk) is a vector of equispaced time samples of a complex-valued chirp, and where (zk)

is a complex-valued white noise sequence z = z0 + ı z1 where z0 and z1 are two independent

vectors of i.i.d. N(0, σ2/2) variables. Note that E|zk|2 = σ2 and E‖z‖2 = Nσ2. In our

experiments the signal f obeys the normalization ‖f‖ =
√
N and we vary the noise level σ.

The chirp is of the form

f(t) = C ·A(t)eıNϕ(t), (5.17)

and sampled at the equispaced points tk = k/N , k = 0, 1, . . . , N − 1; the parameter C is a

normalization constant. As a test signal we considered the cosine phase chirp with slowly

varying amplitude:

A(t) = 2 + cos(2πt+ π/4), ϕ(t) = 2π
(

sin(2πt)/4π + 200πt/1024
)
.

In all the simulations, we chose N = 512 and the normalization constant C such that

‖f‖2`2 = 1. Figure (5.4) shows the real part of the signal under study.

As a measure of performance we used the mean-squared error

MSE(f, f̂) = E

[
1
N

∑
k

|fk − f̂k|2
]
, (5.18)
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Figure 5.4: Real part A(k/N)/‖A‖ cos(Nϕ(k/N)), k = 0, . . . , N−1 of the of the cosine phase chirp
under study

where f̂ = (f̂k) is the estimate of the unknown signal. Note the mean-squared error of

estimating the signal using the data itself 3; we have MSE(f, y) = E
[

1
N ‖z‖

2
]

= σ2.

In this setup, we define the Signal-to-Noise Ratio of an estimator f̂ as

SNRdb(f, f̂) = 10 log10

(
‖f‖2

E‖f − f̂‖2

)
. (5.19)

SNRdb is measured in decibels and due to the normalization of f we have SNRdb(f, y) =

−10 log10(N · σ2). A high value of SNRdb is an indication that the estimator is good. For

the sample SNRdb for a particular realization of the data, we drop the expectation in the

definition.

We considered three estimation procedures:

1. BP : Best Path estimator using constant amplitude fits of chirplets; see Section 5.2.1.

2. BPGA : Best Path estimator based on the estimation of the chirp phase provided by

standard BP estimator in Section 5.2.1, followed by a global amplitude fitting using

splines as explained in Section 5.5.

3. TBCF : thresholding in the best chirplet tight frame; see Section 5.6.

All the methods assumed the noise variance to be known.
3This amounts to maximum likelihood estimation without penalization.
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For the BP estimators we considered the chirplet graph such that two chirplets are con-

nected if and only if they live on adjacent time intervals and if the instantaneous frequencies

at their juncture coincide. For the discrete chirplets based on (2.1), we considered frequency

offsets bµ = 2πm, for m ∈ {−N/2, . . . , 0, . . . , N/2 − 1}. For the BP estimator, we did not

consider chirplets which had the instantaneous frequency falling out of this range. The slope

parameters aµ of the chirplets ranged from −πN to πN with a discretization at scale 2−j

of the form

aµ = 2πN(−1/2 + k · 2j−J), k ∈ {0, . . . , 2J−j}

where J = log2N . This ensures that any endpoint of a dyadic interval is an integer multiple

of 2π. The scales considered where 2−j , where j = 0, 1, . . . , J − 1, resulting in dyadic

intervals I of lengths |I| = 2J−j . For practical purposes one might want to use a different

discretization; in particular it should not be required to consider dyadic intervals of such

small scales. We choose this configuration to keep things simple for our demonstration.

The parameter λ in the complexity functional (5.10) for the BP estimators was chosen

to be

λ2 = 4σ2 log(N).

We tried using different values for this parameter for the set of noise levels we considered.

The estimator seemed to choose the same set of chirplets for values even factor 10 times

different than the value given by this formula; i.e., it chose the same point on the convex

hull determined by the value of the best chirplet paths of different lengths.

The smoothing parameter α for the spline smoothing for the global amplitude estimate

in BPGA was chosen using cross-validation. For each realization of the data y, the cross-

validation score CV (α) (see (5.13)) was calculated for the range of parameters

α = 0.001 · k, k = 1, 2, . . . , 50.

The parameter that minimizing CV (α) was used for the amplitude smoothing.

For the TBCF estimator we chose the same discretization of chirplet slopes as for the

BP estimator. The parameters (5.16) were chosen to be

Λ = 4σ2 log(N) and τ = 3
√

2.



111
For this fixed value of Λ, we tuned τ by trying out a series of different values for estimating

our test signal and choosing a value that gave good results. The cutoff function for the

chirplet windowing was chosen to be ρ(t) = sin(π/4(1 + sin(πt))) for |t| ≤ 1/2, 1 if t > 1/2,

and 0 if t < −1/2.

5.7.2 Results

We compared the three estimation procedures for the test signal using different values of

the noise level. Figures 5.5, 5.6, 5.7, and 5.8 show examples of estimations of the cosine

phase chirp in the case of σ = 0.01, 0.03, 0.05, and 0.07, respectively. We plot the real parts

of the noisy signal and the estimations for that particular realization. Figure 5.9 shows the

estimation of the instantaneous frequency ϕ′(t) for the same realizations. The estimation is

based on the instantaneous frequency of the chirplets in the best path.

Both qualitatively and in terms of SNRdb, the BP estimator using the global amplitude

fit performs the best. At the higher noise levels σ = 0.05, 0.07, the TBCF estimator starts to

estimate the chirp as being absen,t while the other two methods give at least a qualitatively

reasonable estimates - even for the extreme case σ = 0.07, where the plot of the noise does

not even fit inside the portion of the graph that is displayed4. Notice the discontinuity of

the estimate for the BP estimators in the slowly oscillatory portion of the chirp. Therefore

there might be room for improving the methods for estimation at low frequencies; perhaps

something along the lines of the “phaselet graph” we previously discussed.

Figure 5.9 shows that we have a very good agreement between the instantaneous fre-

quency of the unknown chirp and the instantaneous frequency of the chirplet paths. Notice

that as the noise level increases, the BP estimator uses fewer chirplets to fit the data.

Table 5.1 shows estimatedMSE(f, f̂) for a range of noise levels. The MSE was estimated

by the sample mean of squared errors from 1,000 realizations of the noise sequence z. Notice

that BPGA always performed best. The BP estimator performed better than TBCF for

all the cases except for the lowest noise level. This is perhaps due to the crude estimation

piecewise constant approximation of the amplitude.
4We choose to use the same scaling of the axis for all the plots.
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Figure 5.5: Comparison of the estimation procedures for noise level σ = 0.01: (a) Noisy signal, (b)
BP estimation, (c) TBCF estimation, (d) BPGA estimation

σ 0.0100 0.0300 0.0500 0.0700 0.0900 0.1000
BP 0.0106 0.0208 0.1373 0.3452 0.6144 0.7353

TBCF 0.0071 0.0890 0.2857 0.5745 0.8906 0.9764
BPGA 0.0051 0.0146 0.1062 0.2596 0.4430 0.5607

Table 5.1: Comparison on estimated MSE for the three estimation procedures and the varying
amplitude cosine chirp of length N = 512. Each estimate is based on 1,000 realizations of the noise.
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Figure 5.6: Comparison of the estimation procedures for noise level σ = 0.03: (a) Noisy signal, (b)
BP estimation, (c) TBCF estimation, (d) BPGA estimation
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Figure 5.7: Comparison of the estimation procedures for noise level σ = 0.05: (a) Noisy signal, (b)
BP estimation, (c) TBCF estimation, (d) BPGA estimation
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Figure 5.8: Comparison of the estimation procedures for noise level σ = 0.07: (a) Noisy signal, (b)
BP estimation, (c) TBCF estimation, (d) BPGA estimation
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Figure 5.9: Estimation of the instantaneous frequency ϕ′(t) based on the best chirplet path from
the BP estimation procedure: (a) Noise level σ = 0.01, (b) Noise level σ = 0.03, (c) Noise level
σ = 0.05, (d) Noise level σ = 0.07
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5.7.3 Discussion

Note that TBCF uses balanced recursive dyadic partitions (BRDPs), while the BP estimator

considered every possible recursive dyadic partition involving intervals of length |I| = 2J−j ,

j = 0, 1, . . . , J − 1. Since the regularity of the chirp does not change dramatically over

the interval, we would believe that adding this restriction to the BP estimator could only

improve the estimation, since there would be fewer models to consider in the complexity

functional - although the improvement might not be great.

We notice that the performance of the BP estimator seems to be better than that of

the TBCF estimator at the noise levels we looked at. But the comparison is perhaps not

fair since the BP estimator relies heavily on the assumption that the unknown signal is a

single chirp, and would not be suitable for estimation problems where there was more than

one chirp present in the data at the same time. However, the TBCF estimator does not

make this assumption and could be used in situations where the BP estimator would be

ill suited. Another point: TBCF does not rely much on the fact that the phase ϕ of the

chirp is smooth and allows for the possibility of being extended to handle discontinuities in

the instantaneous frequency, ϕ′, due to the dyadic structure and adaptivity of the libraries

of multiscale chirplets. Since the BP estimator relies on, -and exploits-, the fact that the

phase is smooth, it would be difficult for it to compete with the TBCF estimator on these

grounds (unless, perhaps, by making some prior assumptions about how big the jump at the

discontinuity can be). Finally, if the data was only noise or the chirp “turn on and off”, the

TBCF would tend to correctly estimate the chirp to be zero at those places. Meanwhile, the

BP estimator would always return some estimate. We could extend the BP estimator so that

first we would do a BP test to see how likely there is to be a chirp in the data segment, and

then follow with an estimation, or we could incorporate some kind of thresholding, setting

any chirplet costs below a certain value to zero.



118

Chapter 6

Approximation Properties of Chirplet
Paths

After introducing multiscale chirplets and the notion of a chirplet graph, we need to decide

upon a discretization of the chirplets and define connectivities to fix the topology of the

chirplet graph. Obviously such configurations depend on the class of functions we want to

consider, such as how wildly we want to allow the chirps to behave, and so forth. Let’s say

we have decided upon the class of chirps; e.g., by using a mathematical description (bounds

on derivatives, etc.). A natural requirement would be to configure the chirplet graph so

that any chirp in the class is in some sense “close to” some chirplet path. That is, we want

to know how to construct a chirplet graph so that the distance, measured using a suitable

norm, from any chirp to the space of chirplet paths satisfies some prescribed bound. In the

following sections we will give a precise mathematical description of such a class of chirps

and give error bounds for approximation of chirps based on chirplet paths.

6.1 Mathematical Description of a Class of Chirps

We follow the definition in [20] and consider a class of chirps with some restrictions on the

regularity of the amplitude A and phase ϕ of the chirps. The measure of roughness will be

based on the Hölder regularity of these functions. For 0 < s ≤ 1, the function g(t) is said

to be in the Hölder class HÖLDERs(R) if ‖g‖L∞ ≤ R and

|g(t)− g(t′)| ≤ R · |t− t′|s, 0 ≤ t, t′ ≤ 1.
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For s > 1 and m < s ≤ m+ 1, g is in the Hölder class HÖLDERs(R) if ‖g‖L∞ ≤ R, and

|g(m)(t)− g(m)(t′)| ≤ R · |t− t′|s−m, 0 ≤ t, t′ ≤ 1.

Note that if s = 1 the inequality above is simply the Lipschitz condition. For s = m+ 1, m

positive integer, the Hölder class is the set of functions g bounded by R such that g(m) is

Lipschitz. Denote the homogeneous Hölder norm by ‖ · ‖s where

‖g‖s = sup
t,t′

|g(m)(t)− g(m)(t′)|
|t− t′|s−m

.

For λ ∈ [1, N ] and R > 0, define the class of chirps

CHIRP(s, λ,R) := {f : A,ϕ ∈ HÖLDERs(R), |ϕ′(t)| ≤ π, |A′(t)| ≤ R} (6.1)

where f(t) = A(t) exp(iλϕ(t)) or f(t) = A(t) cos(λϕ(t)). The conditionA,ϕ ∈ HÖLDERs(R)

controls the roughness of the amplitude and phase of chirp, while |ϕ′(t)| ≤ π and 1 ≤ λ ≤ N

ensures that the oscillation rate is bounded and does not exceed the Nyquist rate.

It is important to point out that this model is allowed to depend on the sampling rate.

If A, ϕ, and λ were kept fixed and we let N grow, the chirps in the class under consideration

would essentially become non-oscillatory and the statistical problems would correspond to

estimation or detection of smooth functions. Instead we will keep the smoothness of A and

ϕ fixed while letting λ grow as the number of samples N grows. We will mostly focus on

the extreme case λ = N , which allows for oscillations almost at the sampling rate. We want

to emphasize that the theoretical results on chirp estimation we will present in Chapter 7

will be nonasymptotic and in that case we can take N as being a large fixed constant.

6.2 Approximation of Chirps Using Chirplet Paths

Approximation properties are very important in statistical theory, particularly for estima-

tion. The results below will be used for our discussion about near-optimal estimation of

chirps using chirplet paths. We start with a lemma that provides an upper bound on how

well in terms of the L∞-norm the instantaneous frequency for any chirp in CHIRP(s,N,R)

can be approximated by an instantaneous frequency of a chirplet path. The estimates
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provided by this lemma are then used to establish bounds for errors in terms of `2 and L2

norms of approximating chirps using constant amplitude chirplets and amplitude-modulated

chirplets.

6.2.1 Approximation of the instantaneous frequency

Consider f ∈ CHIRP(s,N,R), where either f(t) = A(t) cos(Nϕ(t)), or f(t) = A(t) exp(iNϕ(t)).

The derivation of our bounds for approximating f using chirplet paths will be based on how

well the instantaneous frequency, ϕ′, of the chirp can be approximated by an instantaneous

frequency of a chirplet path. Let P be a partition of the interval [0, 1], and for I ∈ P, write

I = [t0,I , t1,I ]. Then we have the following bounds:

Lemma 3. Assume ϕ ∈ HÖLDERs(R) and that the parameters aµ, bµ in (2.1) are of the

form

bµ = 2π∆b ·m, aµ = 2π
∆b
|I|
· l, (6.2)

where l,m ∈ Z, for some ∆b > 0. Then there is a continuous broken line
∑

I∈P(bµ + aµ(t−

t0,I))1I(t) such that for every I ∈ P,

sup
t∈I
|ϕ′(t)− (bµ + aµ(t− t0,I))| ≤ R · |I|s−1 + 2π∆b. (6.3)

As a consequence, the piecewise quadratic phase function, θ(t), whose first derivative is equal

to this broken line, i.e., θ′(t) =
∑

I∈P(bµ + aµ(t− t0,I))1I(t), and θ(t0,I) = ϕ(t0,I), obeys:

sup
t∈I
|ϕ(t)− θ(t)| ≤ R · |I|s + 2π∆b|I|, (6.4)

for every I ∈ P.

For these bounds to hold, it suffices to consider slope parameters (aµ) such that

|aµ| ≤ R · |I|s−2 + 3π∆b|I|−1. (6.5)

For s = 2, the range

|aµ| ≤ R · |I|s−2 + 3π∆b|I|−1

suffices.

The proof the lemma may be found in Appendix C.2 and relies on error bounds for
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Taylor approximations of functions in HÖLDERs(R). Note that a similar lemma was stated

and proved in [20].

Lemma 3 suggests a discretization for the chirplet graph. The bound on the maximum

distance from the piecewise polynomial curve from ϕ′ and ϕ in (6.3) and (6.4) is split into

two terms:

1. Approximation error due to the smoothness constraint of the phase function ϕ.

2. Approximation error due to discretization of the frequency offset bµ,I .

The first error dominates the other unless we choose a fine enough discretization for the

frequency offsets. How small we need to take the discretization step ∆b depends on the size

of the shortest interval in the partition P and the smoothness parameter s. Bounding the

discretization step gives us:

Corollary 1. For the frequency spacing, ∆b ≤ infI∈P |I|s−1, the bounds are

sup
t∈I
|ϕ′(t)− (bµ + aµ(t− t0,I))| ≤ C(R) · |I|s−1, (6.6)

and

sup
t∈I
|ϕ(t)− θ(t)| ≤ C(R) · |I|s, (6.7)

for every I ∈ P where we can take C(R) = R+ 2π. It suffices to consider slope parameters

(aµ) such that

|aµ| ≤ (C(R) + π) · |I|s−2. (6.8)

For s = 2, the range

|aµ| ≤ C(R),

suffices.

The requirement

|ϕ′(t)| ≤ π,

for chirps in CHIRP(s, λ,R) with phase ϕ, gives us a sufficient range for the frequency offsets

bµ,I = 2π∆b ·m, m ∈ Z; it is enough to consider integers m satisfying

|m| ≤ 1
2∆b

.
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We chose the discretization of the frequency bµ to be independent of the length of the

interval |I|. This simplifies the topology of the chirplet graph and therefore makes imple-

mentations of network flow algorithms a little bit easier. With this choice, we can define the

following connectivity constraint and the lemma would still hold: Two chirplets, possibly at

different scales, are connected if and only if they are supported on adjacent time intervals

and their “instantaneous frequencies” at the juncture coincide. Another possibility would be

to choose the discretization of the frequency offset to be scale dependent. Then we could

still have a piecewise linear function satisfying the bounds in the lemma, but not neces-

sarily continuous. At the breakpoints of the piecewise linear function, we would, however,

have some inequalities for the distance between the endpoints. This would give us some

connectivity requirements which would determine a topology for the chirplet graph.

Lemma 3 tells us how wide the range of slope parameters needs to be. The next lemma

gives us guidelines for deciding the connectivities in the chirplet graph for approximating

chirps from CHIRP(s,N,R) using the discretization in Lemma 3. Assume we have two

chirplets on adjacent time intervals such that one ends at the same frequency as the other

one starts. Then we have the following sufficient bound on the maximum difference in their

slopes for the estimates (6.3) and (6.4) to still hold.

Lemma 4. Assume ϕ ∈ HÖLDERs(R). Let P be a partition of [0, 1) and the collection

of parameters (bI)I∈P and (aI)I∈P be of the form as in Lemma 3 such that the continuous

broken line
∑

I∈P(bI + aI(t− t0,I))1I(t) satisfies (6.3) and is constructed as in the proof of

Lemma 3. Take ∆b ≤ infI |I|s−1.Then for every two adjacent intervals, I and I ′, in P,

|aI − aI′ | ≤ (2R+ 6π) · (max{|I|, |I ′|})s−2. (6.9)

For s = 2, the inequality holds with the constant 2R+ 4π instead.

Proof. This lemma follows directly from the bound on the slope parameter in (6.8) and the

triangle inequality |aI − aI′ | ≤ |aI |+ |aI′ |.
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6.2.1.1 Chirplet graph topology for balanced recursive dyadic partitions

Restricting ourselves to Balanced Recursive Dyadic Partitions P as in Definition 1, we have

that for any adjacent intervals I, I ′ ∈ P,

max{|I|, |I ′|} ≤ 2 min{|I|, |I ′|}.

Consider the case when these intervals differ in length. Without loss of generality, assume

that |I| > |I ′| so that

|I ′| = 1
2
|I|.

Let aI = 2π|I|s−2 · l1 and aI′ = 2π|I ′|s−2 · l2 be the slopes of the continuous broken line

constructed in the proof of Lemma 3 and satisfying (6.3). Then from Lemma 4 we have

|aI − aI′ | = 2π|l1 − l2/2s−2| · |I|s−2 ≤ (2R+ 6π) · |I|s−2,

and therefore

|l1 − l2 · 22−s| ≤ (R/π + 3).

Hence, each chirplet only needs to be connected to a constant number of chirplets for the

approximation bounds in Lemma 3 to hold.

6.2.1.2 Chirplet graph topology for monoscale analysis

If we knew the regularity s of the unknown chirp a priori we could use a monoscale chirplet

graph where the time axis is partitioned uniformly. Assume that we use parameters of the

same form as in Lemma 3 with the frequency discretization equal to ∆b = |I|s−1, where |I|

is the length of the intervals in the uniform partition. Then

aµ = 2π|I|s−2 · l, l ∈ Z.

Take two adjacent time intervals I and I ′ from the partition. On these intervals, let aI =

2π|I|s−2 · l1 and aI′ = 2π|I|s−2 · l2 be the slopes of the continuous broken line constructed

in the proof of Lemma 3 and satisfying (6.3). By Lemma 4,

|aI − aI′ | = 2π|I|s−2 ·∆l ≤ C · |I|s−2,
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or,

∆l ≤ C ′,

where ∆l = |l1 − l2| ∈ Z and the constant C ′ can taken to be C ′ = R/π + 3, and if s = 2,

C ′ = R/π + 2. Thus for monoscale analysis, every chirplet in the chirplet graph only needs

to be connected to a constant number of chirplets for the bounds in Lemma 3 to hold.

6.2.2 The case s = 2

For chirps in CHIRP(s, λ,R) with s = 2, we can get the same bounds as in Lemma 3 by

considering only monochromatic chirplets; i.e., chirplets whose frequency does not change

over their support, or, simply said, local cosines. If we multiply each chirplet with a smooth

window, we would have basis functions similar to classical Gabor Analysis (see [52] and

references therein). Lemma 5 states this fact more precisely. The proof is given in Ap-

pendix C.3.

Lemma 5. Assume ϕ ∈ HÖLDERs(R) with s = 2. Consider the uniform partition P of

[0, 1] into L intervals, Ik, k = 1, . . . , L, each of length |I|. Let the parameters aµ, bµ in (2.1)

be such that aµ = 0 and

bµ = 2π∆b ·m, (6.10)

where m ∈ Z, for some ∆b > 0. Then there is a piecewise constant function
∑

I∈P bI1I(t)

such that all of the below are satisfied:

1. For every I ∈ P,

sup
t∈I
|ϕ′(t)− bI | ≤ R/2 · |I|+ π∆b. (6.11)

2. For two adjacent intervals, I and I ′,

|bI − bI′ | ≤ R · |I|+ 2π∆b. (6.12)

3. The piecewise linear phase function, θ(t), satisfying θ′(t) =
∑

I∈P bI1I(t), and θ(t0,I) =

ϕ(t0,I), obeys:

sup
t∈I
|ϕ(t)− θ(t)| ≤ R/2 · |I|2 + π∆b|I|, (6.13)

for every I ∈ P.
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We also give a lemma for the specific case R = 1, which will be used in a later chapter.

Its trivial proof is given in Appendix C.4.

Lemma 6. Assume same conditions as in Lemma 5, but with

bµ,Ik = 2π|I| ·m, if k is odd, bµ,Ik = 2π|I| · (m+ 1/2), if k is even, (6.14)

where m ∈ Z. Then there is a piecewise constant function
∑

I∈P bI1I(t) such that all of the

below are satisfied:

1. For every I ∈ P,

sup
t∈I
|ϕ′(t)− bI | ≤ (1/2 + π) · |I|. (6.15)

2. Let I and I ′ be two adjacent intervals with bI = 2π|I| ·m1 and bI′ = 2π|I| · (m2 + 1/2),

m1,m2 ∈ Z. Then,

m1 = m2, or m1 = m2 − 1. (6.16)

3. The piecewise linear phase function, θ(t), satisfying θ′(t) =
∑

I∈P bµ1I(t), and θ(t0,I) =

ϕ(t0,I), obeys:

sup
t∈I
|ϕ(t)− θ(t)| ≤ (1/2 + π) · |I|2, (6.17)

for every I ∈ P.

Thus for phase functions ϕ ∈ HÖLDER2(1), the dictionary of chirplets and the topology

of the chirplet graph can be very simple for the bounds (6.15) and (6.17) to hold. Every

chirplet is monochromatic and connects to two other chirplets to the right (unless, of course,

it is a chirplet at the far right end in the chirplet graph).

6.2.3 Approximation using constant-amplitude chirplets

In the analysis below the norm ‖ ·‖ can either stand for the L2-norm ‖f‖2L2
=
∫ 1

0 |f(t)|2dt or

the `2-norm ‖f‖2`2 =
∑N−1

k=0 |f(k/N)|2. Let f ∈ CHIRP(s,N,R) be a complex-valued chirp

so that

f(t) = A(t) · eiNϕ(t),

where A,ϕ satisfy the conditions in (6.1). Consider a chirplet graph with a uniform partition

P of the time interval [0, 1] into intervals of length |I|. Let the slope and frequency offset
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parameters of the chirplets in the graph be chosen as in (6.2) in Lemma 3 with

∆b = |I|s−1,

so that Corollary 1 holds. LetW be a chirplet path in the graph and write P = {Iv : v ∈W}.

Then the number of chirplets in the path is

|W | = |I|−1.

Let θ be a phase function corresponding to this path such that

θ(t) =
∑
v∈W

θv(t)1Iv(t)

where θv(t) is the phase of the chirplet cv(t) = exp(iNθv(t)) · 1Iv(t)/‖1Iv‖, normalized such

that ‖cv‖ = 1. We wish to approximate f with a function f̃ of the form

f̃ =
∑
v∈W

λvcv, (6.18)

where (λv) is a family of complex scalars. We assume the chirplets have phase offsets equal

to 0, that is, if Iv = [t0, t1), θv(t0) = 0. Then the phase offset of the local fitting function

λvcv is encoded in λv. Equivalently we could have considered λv to be a non-negative real

number and included a phase offset parameter in the chirplet cv.

For a fixed phase function θ, the minimum squared error for approximating f using a

linear combination of chirplets as in (6.18), is

min
(λv)
‖f − f̃‖2 = min

(λv)

[
‖f‖2 −

∑
v∈W

2Re(〈f, λvcv〉) + |λv|2‖cv‖2
]

= ‖f‖2 +
∑
v∈W

min
(λv)

[
|λv|2 − 2Re(〈f, λvcv〉)

]
= ‖f‖2 −

∑
v∈W
|〈f, cv〉|2.

The last equality follows from:
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1. Re(〈f, λvcv〉) ≤ |〈f, λvcv〉| = |λv||〈f, cv〉|, with equality when arg(〈f, λvcv〉) = 0, or

arg λv = arg〈f, cv〉 =: γv.

2. The minimization of

|λv|2 − 2|〈f, cv〉| · |λv|,

achieved when

|λv| = |〈f, cv〉|.

Therefore, the minimizer is of the form

f̃ =
∑
v∈W

λvcv =
∑
v∈W

eiγv |〈f, cv〉| · cv.

Later, when we consider chirp estimation using chirplet paths, these two conditions for

equality can be interpreted as the local maximum likelihood estimates (MLE) of the phase

offset and the amplitude of the unknown chirp.

The next step is to get a good upper bound on the approximation of the chirp; i.e.,

establish an upper bound for

min
W

min
(λv)
‖f − f̃‖2 = min

W
‖f‖2 −

∑
v∈W
|〈f, cv〉|2. (6.19)

In our chirplet graph, there is a chirplet pathW ′ with a phase function θ such that θ′ and ϕ′

satisfy inequality (6.3) from Lemma 3. An important observation is that the approximation

error does not depend on the phase offset of the chirplets. Therefore, to establish an upper

bound on the right-hand side of (6.19), we can assume θv(t0) = ϕ(t0) for every interval

Iv = [t0, t1] in the partition P. Thus we can assume that θ and ϕ satisfy (6.4) from

Lemma 3. Write δ = ϕ− θ and let δ̄ be the upper bound in inequality (6.7); i.e.,

δ̄ = C · |Iv|s, (6.20)

with C = C(R) = R+ 2π. Furthermore, assume

δ̄ ≤ N−1.
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Define 〈·〉I and ‖ · ‖I by 〈f, g〉I = 〈f, g1I〉 and ‖f‖2I = 〈f, f〉I for any two functions f and g.

As an upper bound for (6.19) we will use

‖f‖2 −
∑
v∈W ′

|〈f, cv〉|2 =
∑
v∈W ′

‖f‖2Iv − |〈f, cv〉|
2.

It is clear that it suffices to bound each term in the sum separately. We start by establishing

a lower bound on |〈f, cv〉|2. The elementary inequalities |Re(z)| ≤ |z| for all z ∈ C, and

cos(x) ≥ 1− x2/2 for all x ∈ R, give

|〈f, cv〉|2 = |〈AeNδ, 1Iv/‖1Iv‖〉|2 ≥ (〈A cos(Nδ), 1v/‖1Iv‖〉)2

≥ (1−N2δ̄2/2)2 · (〈|A|, 1Iv/‖1Iv‖〉)2

≥ (1−N2δ̄2) · (〈|A|, 1Iv/‖1Iv‖〉)2.

We can bound (〈|A|, 1Iv/‖1Iv‖〉)2 by the Cauchy-Schwartz inequality:

(〈|A|, 1Iv/‖1Iv‖〉)2 ≤ ‖A‖2‖1Iv/‖1Iv‖‖ = ‖A‖2.

Until now the bounds have been independent of the type of norm. Consider the two cases:

1. Assume we are using the L2-norm: Then ‖1Iv‖ =
√
|Iv|. Bounding (〈|A|, 1Iv/‖1Iv‖〉)2

by the Cauchy-Schwartz inequality as above, gives,

‖f‖2Iv − |〈f, cv〉|
2 ≤ ‖A‖2Iv − (〈A, 1Iv/

√
|Iv|〉)2 +N2δ̄2 · (〈|A|, 1Iv/

√
|Iv|〉)2

≤ ‖A‖2Iv − (〈A, 1Iv/
√
|Iv|〉)2 +N2δ̄2 · ‖A‖2Iv

≤ ‖A‖2Iv − (〈A, 1v/
√
|Iv|〉)2 + C2 ·N2|Iv|2s · ‖A‖2Iv .

Observe that the first two terms are simply the minimum squared error of approxi-

mating A(t) with a constant function on the interval Iv. Therefore, Taylor’s formula

and the requirement |A′| ≤ R give us the bound

‖A‖2Iv − (〈A, 1Iv/
√
|Iv|〉)2 ≤ R2|Iv|2‖1Iv‖2Iv = R2|Iv|3.
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We also have the trivial bound

‖A‖2Iv − (〈A, 1Iv/
√
|Iv|〉)2 ≤ ‖A‖2Iv .

Finally we have

min
W

min
(λv)
‖f − f̃‖2L2

≤ |Iv|−1 · (R2|Iv|3) + ‖A‖2L2
· C2 ·N2|Iv|2s

= R2|Iv|2 + ‖A‖2L2
· C2 ·N2 · |Iv|2s.

2. Assume we are using the `2-norm: Let NI be the number of points in each interval

I ∈ P. Then the normalization constant for the chirplets is

‖1Iv‖ =
√
NI .

The same arguments as above give,

‖f‖2Iv − |〈f, cv〉|
2 ≤ ‖A‖2Iv − (〈A, 1Iv/

√
NI〉)2 + C2 ·N2|Iv|2s‖A‖2Iv ,

and

‖A‖2Iv − (〈A, 1Iv/
√
NI〉)2 ≤ R2|Iv|2NI .

Since the total number of points is N = NI |I|−1, we get

min
W

min
(λv)
‖f − f̃‖2`2 ≤ |Iv|−1 · (R2|Iv|2NI) + ‖A‖2`2 · C

2 ·N2 · |Iv|2s

= R2N |Iv|2 + ‖A‖2`2 · C
2 ·N2 · |Iv|2s.

We summarize these results in a theorem:

Theorem 2. Suppose f ∈ CHIRP(s,N,R) and consider the chirplet graph GN with a uni-

form partition of the time interval [0, 1] such that each interval is of length |I|, the slope and

offset parameters are discretized as in Lemma 3, and

C ·N · |I|s ≤ 1. (6.21)

Then there exists a chirplet path W in the chirplet graph GN and a family of complex scalars
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(λv)v∈W such that the linear combination of chirplets f̃ =

∑
v∈W λvcv, satisfies:

‖f − f̃‖2 ≤ min(‖A‖2, R2|I|2) + ‖A‖2 · C2 ·N2 · |I|2s, (6.22)

where the constant C = C(R) is as in Corollary 1. In particular, since ‖A‖L∞ ≤ R, we

have

‖f − f̃‖2 ≤ R2|I|2 +R2 · C2 ·N2 · |I|2s.

The norm is either the L2-norm or the Euclidian norm defined by ‖f‖2 = 1/N ·
∑N−1

k=0 |f(k/N)|2.

We also have established an important bound for the sum of the chirplet costs along a

path:

Corollary 2. Assume the conditions in Theorem 2 hold.

• `2-norm: If

‖A‖`2 ≥
√
NR|I|,

then there exists a chirplet path W in the graph that

∑
v∈W
|〈f, cv〉|2 ≥ ‖A‖2`2 ·

(
1− C2 ·N2 · |I|2s

)
−NR2|I|2.

• L2-norm: If

‖A‖L2 ≥ R|I|,

then there exists a chirplet path W in the graph that

∑
v∈W
|〈f, cv〉|2 ≥ ‖A‖2L2

·
(

1− C2 ·N2 · |I|2s
)
−R2|I|2.

The constant C = C(R) can be chosen to be the same as in Corollary 1.

The first term of the bound (6.22) in Theorem 2 can be interpreted as the error due

to approximating the amplitude of the chirp by a piecewise constant function. The second

term is due to how well we can approximate the instantaneous frequency of the chirp. Note

that the bound is trivial unless the norm (or energy) of the chirp, ‖A‖, satisfies

‖A‖ ≥ R|I|. (6.23)
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Then the second term controls the error of approximation if the following condition is sat-

isfied:

‖A‖2 · C2 ·N2 · |I|2s ≥ R2 · |I|2,

or

|I| ≥ C1 ·N−1/(s−1),

for the constant C1 = (R2/(‖A‖2 · C2))1/(2(s−1)). Note that condition (6.21) imposes

|I| ≤ C2 ·N−1/s,

for C2 = 1/C. Since s ≥ 2, N−1/s ≥ N−1/(s−1), and therefore these two conditions do

not need to contradict each other. Notice that the lower bound requirement has a constant

where the norm of the chirp, ‖A‖, appears in the denominator.

As a second corollary of Theorem 2, we have:

Corollary 3 (m-term approximation). Suppose f ∈ CHIRP(s,N,R). Assume the chirplet

graph implied in Theorem 2 where the uniform partition of [0, 1) consists of m = |I|−1

intervals such that

C1 ·N−1/(s−1) ≤ |I| ≤ C2 ·N−1/s. (6.24)

Then there is a linear combination f̃ of chirplets along a path in the graph obeying

‖f − f̃‖2 ≤ C ·N2m−2s,

for a constant C depending on R.

As for Theorem 2, the norm is either the L2-norm or the Euclidian norm defined by

‖f‖2 = 1/N ·
∑N−1

k=0 |f(k/N)|2. Note that the lower bound in condition (6.24) puts a

restriction on how well we can approximate chirps from CHIRP(s,N,R) using chirplet paths

with constant amplitude chirplets. This problem vanishes if we use amplitude-modulated

chirplets, as we can see in the next section. However, for the purpose of estimation in

Chapter 5, we will see that constant-amplitude chirplets suffice for estimating the chirps in

the class CHIRP(s,N,R).
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Approximating chirps of a lower oscillation degree: We also have similar approxi-

mation bounds for chirps in CHIRP(s, λ,R):

Theorem 3. Suppose f ∈ CHIRP(s, λ,R) and consider the chirplet graph GN with a uniform

partition of the time interval [0, 1] such that each interval is of length |I|, the slope and offset

parameters are discretized as in Lemma 3, and

C · λ · |I|s ≤ 1. (6.25)

Then there exists a chirplet path W in the chirplet graph GN and a family of complex scalars

(αv)v∈W such that the linear combination of chirplets f̃ =
∑

v∈W αvcv, satisfies:

‖f − f̃‖2 ≤ min(‖A‖2, R2|Iv|2) + ‖A‖2 · C2 · λ2 · |Iv|2s,

where the constant C = C(R) is as in Lemma 3. The norm is either the L2-norm or the

Euclidian norm defined by ‖f‖2 = 1/N ·
∑N−1

k=0 |f(k/N)|2.

The proof is only a minor modification of the proof for Theorem 2 and will be omitted.

6.2.4 Approximation using amplitude-modulated chirplets

Below we will give bound on the accuracy of approximating chirps from CHIRP(s,N,R)

using amplitude-modulated chirplets. Let f ∈ CHIRP(s,N,R) be a complex-valued chirp

such that

f(t) = A(t) · eiNϕ(t),

where A,ϕ ∈ HÖLDERs(R) and 0 < A < R.

Consider the same chirplet graph as was used in Section 6.2.3 for the approximation of

chirps using constant-amplitude chirplets. Define C to be the set of functions of the form

f̃(t) =
∑
v∈W

pv(t)cv(t)

where cv(t) = eiθv(t)1Iv(t) is an unnormalized chirplet, pv(t) is a smooth parametric function

belonging to some class, Sv, of smooth functions supported on Iv, and W is a chirplet path

in the chirplet graph. For our purposes, pv(t) is a polynomial of degree at most 2, so

f̃(t) =
∑

v∈W (αv,0 + αv,1t+ αv,2t
2)cv(t) where {αv,l, l = 0, 1, 2} is a set of complex scalars.
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It will become apparent shortly the reason why these coefficients are chosen to be complex

and not real-valued, but one of the reasons is that it allows for local fitting of the phase

offset of the chirp. Let {bv,1, . . . , bv,k} be an orthonormal basis for Sv so the members of the

class C are functions

f̃(t) =
∑
v∈W

k∑
l=1

αv,lbv,l(t)cv(t). (6.26)

Denote the set of all possible amplitude-modulated chirplets by

M = {bl(t)c(t) : l = 1, . . . , k, c(t) is a member of our chirplet dictionary}.

Denote the number of elements inM by Mn (it is equal to k times the number of elements

in the chirplet dictionary).

For approximating f we will use a linear combination of amplitude-modulated chirplets

as in (6.26). That is, we will consider approximating functions of the form

f̃(t) =
∑
v∈W

k∑
l=1

αv,lbv,l(t)cv(t).

Take the phase function θ :=
∑

v∈W θv(t) in f̃ as fixed. Since the minimum squared error

can be decomposed as

min
(pv)
‖f − f̃‖2 =

∑
v∈W

min
pv
‖AeiNϕ − pveiNθv‖2Iv ,

we will focus our attention on the approximation error on one of the intervals, Iv. Write

δ(t) := ϕ(t)− θ(t).

Restricted to the inverval Iv, the approximation is of the form f̃(t) =
∑k

l=1 αlbl(t)cv(t).

Since {b1, . . . , bk} are orthonormal, we get

min
pv
‖AeiNϕ − pveiNθv‖2Iv = min

pv
‖AeiNδ − pv‖2Iv = min

(α)
‖AeiNδ −

k∑
l=1

αlbl‖2Iv

= ‖A‖2Iv −
k∑
l=1

|〈AeiNδ, bl〉Iv)|2.
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If we had chosen the αls to be real-valued, we would have gotten Re(〈AeiNδ, bl〉Iv))2 instead

of |〈AeiNδ, bl〉Iv)|2. But because of the absolute value, the terms in the sum do not change

if we exchange eiNδ for ei(Nδ+θ0) for any θ0 ∈ R. Therefore, we can assume that δ = ϕ− θ

satisfies the inequality (6.4) in Lemma 3. Let δ̄ be the upper bound as defined in (6.20) and

assume that

δ̄ ≤ N−1.

Define the constant C = C(R) to be as in Lemma 3. Using again the elementary inequalities

Re(z) ≤ |z|, for all z ∈ C, and cos(x) ≥ 1− x2/2, for all x ∈ R, we get

min
pv
‖AeiNϕ − pveiNθv‖2Iv ≤ ‖A‖2Iv −

k∑
l=1

[〈A cos(Nδ), bl〉Iv ]2

≤ ‖A‖2Iv −
k∑
l=1

[〈A(1−N2δ̄2/2), bl〉Iv ]2

= ‖A‖2Iv − (1−N2δ̄2/2)2
k∑
l=1

[〈A, bl〉Iv ]2

≤ ‖A‖2Iv − (1−N2δ̄2)
k∑
l=1

[〈A, bl〉Iv ]2

= ‖A‖2Iv −
k∑
l=1

[〈A, bl〉Iv ]2 +N2δ̄2
k∑
l=1

[〈A, bl〉Iv ]2.

The first two terms are simply the squared error of approximating A(t) with its projection

onto Sv; i.e.,

‖A‖2Iv −
k∑
l=1

[〈A, bl〉Iv ]2 = min
pv
‖A− pv‖2Iv . (6.27)

Since minpv ‖A− pv‖2Iv ≥ 0, this also allows us to bound the last term as follows:

N2δ̄2
k∑
l=1

[〈A, bl〉Iv ]2 ≤ N2δ̄2‖A‖2Iv ≤ N
2 · C2 · |Iv|2s · ‖A‖2Iv .

Let Iv = [t0, t1] and let m ∈ Z such that m < s ≤ m+ 1. Then, according to Lemma 16 in

Appendix C.1, we can write

A(t) =
m−1∑
k=0

A(k)(t0)(t− t0)k + ε(t), ∀t ∈ Iv
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where |ε(t)| ≤ K · |Iv|s for a an integer K ≤ ‖A‖s ≤ R. Since A is twice differentiable we

can bound the error in (6.27) by replacing pv with
∑m−1

k=0 A
(k)(t0)(t− t0)k, and get

min
pv
‖A− pv‖2Iv ≤ ‖ε‖

2
Iv ≤ R

2 · |Iv|2s+1. (6.28)

We also have the trivial bound

min
pv
‖A− pv‖2Iv ≤ ‖A‖

2
Iv .

Putting everything together gives

min
pv
‖AeiNϕ − pveiNθv‖2Iv ≤ min(‖A‖2Iv , R

2|Iv|2s+1) +N2 · C2 · |Iv|2s‖A‖2Iv ,

and therefore

min
(pv)
‖f − f̃‖2 ≤ min(‖A‖2, R2|Iv|2s) + ‖A‖2 · C2 ·N2 · |Iv|2s.

Thus we have proved the theorem:

Theorem 4. Suppose f ∈ CHIRP(s,N,R) such that f(t) = A(t) exp(iNϕ(t)) with A,ϕ ∈

HÖLDERs(R) and 0 < A < R. Consider the chirplet graph GN with a uniform partition of

the time interval [0, 1] such that each interval is of length |I|, the slope and offset parameters

are discretized as in Lemma 3, and

C ·N · |I|s ≤ 1. (6.29)

Then there exists a chirplet pathW in the chirplet graph GN and a set of second-order polyno-

mials {pv, v ∈W} such that the combination of amplitude modulated chirplets
∑

v∈W pv(t)cv(t)

satisfies:

‖f − f̃‖2 ≤ min(‖A‖2, R2|Iv|2s) + ‖A‖2 · C2 ·N2 · |Iv|2s,

where the constant C = C(R) is as in Lemma 3. The norm is either the L2-norm or the

Euclidian norm defined by ‖f‖2 = 1/N ·
∑N−1

k=0 |f(k/N)|2.

We can look at the right-hand side of the inequality in Theorem 4 as a separation of the

approximation error into two terms:
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• Approximation error due to the local fitting of amplitude, A(t).

• Approximation error due to the oscillating part of the chirp, exp(iϕ(t)).

It is clear that the latter error dominates the first one; i.e., by how well we can approxi-

mate the instantaneous frequency of the chirp. If we instead consider chirps from the class

CHIRP(s, λ,R), the approximation error obeys,

min
(pv)
‖f − f̃‖2 ≤ min(‖A‖2, R2|Iv|2s) + ‖A‖2 · C(R) · λ2 · |Iv|2s,

where we would require δ̄ ≤ λ−1. If we let λ → ∞ as the sample size N increases, we

also have that error due to local fitting of amplitude being dominated by the latter term.

Otherwise if λ = O(1), the two errors are of the same order.

6.2.5 Approximation of real-valued chirps

Consider the case of real-valued chirps

f(t) = A(t) cos(Nϕ(t)),

where A,ϕ ∈ HÖLDERs(R). Let f̃ be a linear combination of chirplets satisfying the

conditions in Theorem 2 for the complex-valued chirp A(t) exp(iNϕ(t)). By the triangle

inequality, we get

‖f − 1/2(f̃ + f̃∗)‖ ≤ 1
2
· ‖A exp(iNϕ)− f̃‖+

1
2
· ‖A exp(−iNϕ)− f̃∗‖

= ‖A exp(iNϕ)− f̃‖,

and therefore the same type of upper bound holds for the approximation of real-valued

chirps.



137

Chapter 7

Theoretical Performance of the Best
Path Estimator

In Chapter 5 we introduced a flexible procedure for estimating chirps from noisy measure-

ments. Thanks to the underlying graph structure, we have fast network flow algorithms at

our disposal which make the estimator rapidly computable. Since results from preliminary

numerical experiments are promising, we believe this methodology has a potential of being

useful for practical purposes. The purpose of this chapter is to demonstrate that this estima-

tion procedure has very good theoretical performance and possesses optimality properties,

at least in the case of white noise.

We will focus on the class CHIRPs(R) of chirps defined in Chapter 6 and introduced in

[20]. Assuming the smoothness parameter s is unknown but restricted to the interval [2, 3],

our estimator is near-optimal over this class of chirps in the presence of additive Gaussian

white noise; it comes within a factor log(N) within the worst-case mean-squared error,

where N is the length of the signal. If we assume the smoothness parameter to be known,

the estimator is essentially optimal in the sense that it comes within a constant factor times

the worst-case mean-squared error. The theoretical results rely on the approximation results

from Chapter 6 and on the concentration of measure phenomena for Lipschitz functionals

over Gaussian fields.
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7.1 Preliminaries from Statistical Decision Theory

We will take the decision theoretical approach to quantify the performance of estimators for

the problem of recovering functions f ∈ FN from sampled data

yk = fk + zk, k = 0, 1, . . . , N − 1; (7.1)

where fk = f(k/N) and zk is a stochastic sequence of zero mean and with known distribution.

Our goal is to minimize the error of the estimation as measured by the average squared error

loss

MSE(f̂ , f) = E

[
1
N

∑
k

(fk − f̂k)2

]
(7.2)

where N is the number of samples and f̂ is the estimator of f . This risk depends on the

true signal which is unknown. To control the risk for any f ∈ FN we wish to minimize the

maximum risk:

R(FN , f̂) = sup
f∈FN

MSE(f̂ , f).

This gives us a mathematical way to compare estimators quantitatively. We say the estima-

tor f̂ is better than the estimator f̃ in the minimax sense if

R(FN , f̂) ≤ R(FN , f̃).

The minimax risk R∗(FN ) is the lower bound for the risk of all estimators:

R∗(FN ) = inf
f̂

sup
FN

R(FN , f̃).

Usually it is hard to find estimators that attain this minimax risk exactly, and this is certainly

not trivial in our estimation problem. Besides that, finding out what R∗(FN ) actually is can

be quite challenging. Instead, one usually tries to establish a lower bound on this risk. A

common technique for doing this – which we will describe in the next subsection– is based

on an important result from decision theory. It compares the risks from the minimax and

Bayesian viewpoints.
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7.1.1 Bounding the minimax risk using bayes priors

A Bayesian approach to the estimation problem assumes that the unknown function f is

a random variable taking values in the set FN . Let π be the distribution of the signals f

drawn from FN . Then the Bayes risk of an estimator f̂ for the mean squared error risk is

defined to be the expected risk

R(f̂ , π) = Eπ

[
MSE(f̂ , f)

]
,

and the minimum Bayes risk is defined by:

B(π) := inf
f̂
R(f̂ , π).

The Bayes estimator f̃ , which yields the minimum Bayes risk in the case of a squared error

loss, is the conditional expectation of the randomly drawn function f given the data y; also

called the posterior mean:

f̃ = Eπ(f | y).

The Bayes risk for squared error loss is the posterior variance of f given y.

The next theorem relates the minimax risk and the minimum Bayes risk. Its proof can

be found in [57]:

Theorem 5. For any choice of prior π obeying π(FN ) = 1,

R∗(FN ) ≥ B(π).

A distribution π which satisfies B(π) = R∗(FN ) is called a least favorable prior distri-

bution. A technique for bounding the minimax risk by the help of this theorem could be to

seek a prior π that is close to being a least favorable prior, and hopefully simple enough so

we can evaluate the Bayes risk (or at least establish a good lower bound on it). Once we

have a good lower bound on the minimax risk, we try to establish a good upper bound on the

maximum risk of our estimation procedure, ideally one of the same order as the lower bound

on the best risk we could achieve. An estimator that is of the same order as the minimax

risk is said to be optimal, and an estimator which achieves it within a logarithmic factor is

said to be near-optimal. For further details about this decision theoretical framework, see
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[49, 68] and perhaps [57].

7.2 The Data Model for Chirp Estimation

Our theory will assume the data is of the form (7.1), where the class of unknown signals is

F = CHIRPs(R) where s ∈ [2, 3]. The noise vector z = (zk) is assumed to be of the form

z = z0 + ız1 where z0 and z1 are two independent vectors of i.i.d. N(0, 1/2) variables.

The strategy described in Section 7.1.1 is precisely the one we will use to show that our

method for estimating chirps is optimal when the regularity parameter s ∈ [2, 3] is known,

and near-optimal when it is unknown. A good lower bound on the minimax risk has in fact

been already established by Candès in [20], and therefore our main work is to get a good

upper bound for our estimator.

7.3 A Lower Bound on the Minimax Risk for Chirp Estimation

Here is the lower bound for estimating chirps that Candès established in [20]:

Theorem 6. If s ∈ [2, 3], then for a constant C,

M∗(N,FN ) := inf
f̂

sup
FN

MSE(f̂ , f) ≥ C ·N
−2(s−1)

2s+1 . (7.3)

For completeness, we include a detailed proof of this theorem in Appendix C.5 which

simply reproduces Candès’ arguments.

7.4 An Upper Bound on the Risk of the BP estimator

Recall the definition of the complexity functional K(f̃ , f) from (5.6) and the definition of

the class of functions C from Section 5.2:

K(f̃ , f) = ‖f̃ − f‖22 + Λ(f̃),

and C is the set of linear combinations of chirplets such that

f̃ =
∑
v∈W

αvcv, f̃ =
∑
v∈W

1
2

(αvcv + α∗vc
∗
v),
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in the case of complex-valued or real-valued data, respectively. {αv} is a set of complex

scalars and W is any chirplet path in the chirplet graph. For our theoretical considerations,

we will take

Λ(f̃) = λ2N(f̃), N(f̃) := |W |,

with

λ2 = η2 · (1 +
√

2 logMN )2,

for some fixed η > 8, where MN is the number of chirplets in the graph.

7.4.1 Discretization for the BP estimator

For our theoretical treatment we need to choose a suitable discretization for the chirplet

graph and chirplet parameters. Assume the number of samples is dyadic, N = 2J , for some

positive integer J . For the partitions of the time interval [0, 1) we will consider dyadic time

intervals of lengths 2−j for j = blog2(N)/3c, . . . , dlog2(N)/2e, i.e.,

j = bJ/3c, . . . , dJ/2e.

On a dyadic interval I, the slope and frequency offset parameters aµ,I , bµ,I for a chirplet as

in (2.1) are chosen to be of the form

bµ,I = 2π∆b ·m, aµ,I = 2π
∆b
|I|
· l, (7.4)

where ∆b = 2−dJ/2e. This choice ensures that the condition ∆b ≤ infI∈P holds for any

possible partition P using the set of dyadic intervals we have described. Therefore, the

conditions for Lemma 3 hold. As a consequence our dyadic intervals |I| satisfy

C ·N−1/2 ≤ |I| ≤ C ′ ·N−1/3.

Thus, we have the approximation bound from Corollary 3 at our disposal.
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7.4.2 Oracle inequality for the BP estimator

For a fixed signal f , denote the theoretical complexity by K0 := K(f0, f) where f0 is the

minimizer

f0 = arg min
f̃∈C

K(f̃ , f).

Denote the empirical complexity by K̂ := K(f̂ , f), where f̂ is the BP estimation given

the data y = f + z. Note that K̂ is a random variable. Theorem 7 below, gives us an

oracle inequality relating the expected value of the empirical to the theoretical complexity.

Theorems of similar forms for complexity functionals can be found in the literature (see, for

example, [20, 21, 34]).

Theorem 7. Suppose y = f + z, where f ∈ CHIRP and z = (zk) is a vector of i.i.d.

standard Gaussian, either complex-valued so that zk = (z1
k + iz2

k)/
√

2 with z1
k and z2

k i.i.d.

N(0, 1), or real-valued so that zk ∼ N(0, 1). Select λ2 = η2 ·(1+
√

2 logMN )2 with η > 8. Let

f̂ be the minimizer of the empirical complexity K(f̃ , y), and K0 be the minimum theoretical

complexity. Then,

EK̂ ≤ C(η) ·
(
λ2 +K0

)
,

where C(η) = 2e · (1− 8/η)−1.

See Appendix C.6 for the proof of this theorem.

7.4.3 Bounding the ideal risk

Let f be the unknown chirp and let W be any chirplet path in the graph. Denote the

projection of a vector y on the linear span of {cv : v ∈W} by

PW y :=
∑
v∈W
〈y, cv〉cv.

From our discussion in Section 5.1, we have a bias-variance decomposition of the risk R(W )

of estimating f using the projection PW :

RW (f) = E‖f − PW y‖2 = ‖f − PW f‖2 + |W |.
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Denote the ideal risk of estimating f by linear combinations of chirplets along paths in the

graph by

RIDEAL(f) := min
W

RW (f).

Corollary 3 provides us with an upper bound on RIDEAL. In our graph there is a chirplet

path W ∗m of length m, for the uniform partition with interval lengths |I| ∼ m−1, such that

RIDEAL(f) ≤ C(R) ·N3 ·m−2s +m,

where C(R) is a constant of the same size as in the corollary. This inequality gives us the

best bound when choosing the partition such that

m ∼ C(R) ·N3 ·m−2s, or m ∼ (C(R))1/(2s+1) ·N3/(2s+1).

Therefore

RIDEAL(f) ≤ ((C(R))1/(2s+1) + 1) ·N3/(2s+1), (7.5)

where C(R) includes a small correction factor of order 1.

7.4.4 The upper bound

Using the oracle inequality, we can show that our best path estimator (5.7) nearly achieves

the lower bound in Theorem 6:

Theorem 8. Assume the degree of regularity s ∈ [2, 3], but it is otherwise unknown. Then

the best path estimator (5.7) obeys the inequality

sup
f∈FN

MSE(f, f̂) ≤ C(R) · logN ·N−
2(s−1)
2s+1 ,

for a constant C(R).

Proof of Theorem 8. The proof is based on the complexity bound from Theorem 7 and the

upper bound on the ideal risk as in (7.5). Pick a signal f ∈ FN . Since

‖f − f̂‖2 ≤ ‖f − f̂‖2 + λ2 ·N(f̂) = K̂,
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we have

E‖f − f̂‖2 ≤ C(η) ·

(
λ2 + min

f̃∈C

(
‖f̃ − f‖22 + λ2 ·N(f̃)

))
≤ C(η) · 2λ2 ·min

f̃∈C

(
‖f̃ − f‖22 +N(f̃)

)
= C(η) · 2λ2 ·RIDEAL(f)

≤ C(R) · logN ·N3/(2s+1).

Here we have fixed η > 8 and absorbed all the constants and the term (C(R))1/(2s+1) + 1)

from the bound on the ideal risk into the constant C(R). The logarithmic term comes from

the fact that the number of elements inM is MN = O(Nα) for a positive constant α, and

therefore λ2 = η2 · (1 +
√

2 logMN )2 = O(logN). Thus,

MSE(f, f̂) = E
[
1/N · ‖f − f̂‖2

]
≤ C(R) · logN ·N−2(s−1)/(2s+1).

We can interpret the logarithmic term in the bound as a “price for adaptivity” we need

to pay for not knowing the regularity s of the unknown chirp. Presently it is not known

whether it is possible to get away with paying such a factor and it remains to either (i) get

a better lower bound, possibly involving a logarithmic factor, and/or (ii) show there is an

adaptive estimation procedure achieving the existing – or a better – lower bound.

We would like to point out that the chirp estimation procedure Candés proposed in [20]

(which is described in Section 5.6) has an upper bound of the same rate when the regularity

of the chirp is assumed to be unknown. Therefore we have not shown that the BP estimator

is better than thresholding in the best chirplet tight frame (TBCF) for this class of chirps.

Also, as pointed out in Chapter 5, we can easily think of situations in practice where the

TBCF estimator would be better suited than the BP estimator; in particular when there is

more than one chirp present at the same time in the data. However, these theoretical results

give a good supplement to the methodology and numerical results presented in Chapter 5,

and give a quantitative benchmark for other chirp estimation methods to compare to.
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7.5 The BP Estimator is Optimal When Regularity is Known

We finish this chapter by showing that the BP estimator is optimal if we assume further

information about the unknown chirp. Consider the same data model as described in Sec-

tion 7.2 and assume this time that the regularity s ∈ [2, 3] is known to the scientist. Then

we have a sharp bound upper bound on the risk of the BP estimator which achieves the

lower bound on the minimax risk within a constant:

Theorem 9. Assume the degree of regularity s ∈ [2, 3] and is known. Then there is a

monoscale chirplet graph with uniform partition such that every chirplet path is of length L.

Then for every chirp f ∈ CHIRPs(R), the best path estimator (5.7) obeys

E‖f − f̂‖2 ≤
(

1 +
exp(−γL)

(1− exp(−γL))3

)
(1− 8/η)−1λ2L,

and therefore, by taking L ∼ N3/(2s+1),

sup
f∈FN

MSE(f, f̂) ≤ C ·N−
2(s−1)
2s+1 ,

for a suitable constant C.

For the proof of this theorem see Appendix C.7.
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Chapter 8

Bounds on Statistical Performance of
the Best Path Test

Here we will identify rates for the signal strength where the BP test is guaranteed to be

asymptotically powerful. The signals we will consider are chirps belonging to the class

CHIRP(s,N,R). We will not provide rates for the lower bound –i.e., situations for which any

sequence of tests is asymptotically powerless– and therefore we cannot claim that guaranteed

rates are the limits of performance in this problem. To move towards deeper understanding

of our methodology, we will try to connect the BP test and the chirplet graph with an

underlying abstract statistical problem. This abstraction is the problem of detecting paths

of “unusual behavior” in a graph G, where a random variable Xv is associated with each

vertex v ∈ G. In such problems, the typical situation could be such that all the Xvs have

the same distribution F0, and the goal is to decide whether there is a set of connected

vertices in G whose distribution is different from F0. The abstract problem will be studied

further in Chapter 9.

8.1 An Upper Bound for Detection of Chirps of Known Reg-

ularity

We consider the detection of chirps from CHIRP(s,N,R) and assume the regularity param-

eter s ∈ [2, 3] to be known to the scientist. Let the data be

yk = αNfk + zk, k = 0, 1, . . . , N − 1; (8.1)
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where fk = fc(k/N) is a vector of equispaced time samples of a function fc ∈ CHIRP(s,N,R),

and where z = (zk) is a sequence random variables such that z = z0 + iz1 where z0 and z1

are two independent vectors of i.i.d. N(0, 1/2) variables. Assume the vector f = (fk) has

unit-norm, ‖f‖ = 1. Consider the sequence of hypothesis tests (H0,N ) versus (H1,N ), where

we wish to test the null hypothesis

H0,N : αN = 0

against

H1,N : αN 6= 0.

Given a sequence of BP tests (TN ) that we are about to describe, we want to find a sufficient

rate of growth for αN such that the tests are asymptotically powerful for this problem; i.e.,

such that

PH0,N
{TN rejects H0}+ PH1,N

{TN accepts H0} → 0.

The lower bound consideration, which we will not study, would be to find rates of growth

for αN such that

PH0,N
{TN rejects H0}+ PH1,N

{TN accepts H0} → 1,

as N →∞.

8.1.1 Discretization and connectivities

For a fixed signal length N , we pick a uniform partition PN of [0, 1) such that every interval

has length |I|. For the slope and phase offset parameters in the chirplet dictionary we will

use the same discretization as described in Lemma 3. For the connectivities we will consider

the monoscale chirplet graph described in Section 6.2.1.2, where two chirplets are connected

if and only if their time supports are adjacent, and if their instantaneous frequencies coincide

at their juncture. According to Section 6.2.1.2, we can let every chirplet in this graph connect

to only a constant number of chirplets and the approximation bound in Lemma 3 would

still hold. Denote this chirplet graph by GN = GN (LN ), where LN = |I|−1 is the number of
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chirplets in each path. Then the number of paths in GN does not exceed

pN · eγLN ,

for a suitable constant γ > 0, independent of the sample size N , and pN = o(Nβ), for some

β > 0 independent of N ; indeed, once we have chosen a starting chirplet, we have LN − 1

steps where we choose from a constant number of chirplets to connect to. Finally, the test

we wish to consider is the monoscale BP test

T ∗N = T ∗N (|I|) = max
W∈GN

∑
v∈W
|〈y, cv〉|2, (8.2)

where the maximum is taken over all the chirplet paths in GN .

8.1.2 Behaviour of the monoscale BP test under H0

The following theorem gives a bound on T ∗N when the data is pure noise:

Theorem 10. Pick η > 0. Then,

PH0

(
T ∗N >

(
1 +

√
2(γ + η)

)2
· LN

)
≤ 2pN · exp(−η · LN ),

for any monoscale chirplet graph GN which has total number of chirplet paths less than or

equal to KN = pNe
γLN .

Proof. Pick a chirplet graph GN which has total number of chirplet paths less than or equal

to KN = pNe
γLN . Let W be a path in the graph and let PW be the projection of the data

onto the span of {cv : v ∈ W}. Since the cvs are orthonormal, the projection of the data y

is,

PW y =
∑
v∈W
〈y, cv〉cv.

Note that

‖PW y‖22 =
∑
v∈W
|〈y, cv〉|2, (8.3)

which is exactly the sum of the chirplet costs along the chirplet path W .

Observe that ‖PW z‖2 is a Lipschitz functional on a Gaussian field with Lipschitz constant

1 (see the proof of Lemma 22). Note that E‖PW z‖22 = |W | = LN . Then we can use
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Lemma 28 to bound the sum of the costs along a chirplet path under H0: for any t > 0,

P
(
‖PW z‖2 ≥ t+

√
|W |

)
≤ 2 exp(−t2/2).

Pick η > 0 and let t = ξ
√
LN where

ξ =
√

2 · (γ + η).

Then, using identity (8.3), we have

P

(∑
v∈W
|〈z, cv〉|2 ≥ (1 + ξ)2 · LN

)
≤ 2 exp(−ξ2 · LN/2),

and the result follows from a simple union bound:

P

(
max
W

[∑
v∈W
|〈z, cv〉|2

]
≥ (1 + ξ)2 · LN

)
≤ KN · 2 exp(−ξ2 · LN/2)

≤ 2pN · exp((γ − ξ2/2) · LN )

= 2pN · exp(−η · LN ).

If LN ∼ N ξ and pN = o(Nβ) for some ξ, β > 0, this theorem provides us with a useful

bound for studying the asymptotics of the test as N → ∞. It suggests we should compare

T ∗N to a threshold τN ∼ LN . Below are a couple of observations regarding Theorem 10 and

its proof we would like to mention:

1. Theorem 10 holds also in the case of real-valued data y = f + z, where z is a sequence

of i.i.d. standard Gaussians.

2. The arguments in the proof of Theorem 10 do not depend on the partition of the

time interval [0, 1) being uniform – ‖PW z‖ would still be a Lipschitz functional on a

Gaussian field with Lipschitz constant 1 if the partition is non-uniform.

3. The theorem also holds in the case of colored noise and we define the chirplet costs as

|〈Σ−1y, cv〉|2 = |y∗Σ−1cv|2,

where Σ is the covariance matrix of the noise, and y and cv are written as column
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vectors. In this case the chirplets would be normalized such that

c∗vΣ
−1cv = 1.

With this choice of inner product, E|〈z, cv〉|2 = 1, and therefore E‖PW z‖22 = |W |

for any chirplet path W , just as before. The norm of the projector, ‖PW · ‖2, is still

a Lipschitz(1) functional. We could even extend the result to amplitude-modulated

chirplets. It would give us the same rate but different constants.

We could have used bounds for moderate deviations for χ2 to get a similar result as in

Theorem 10, but that would only work in the case when the noise sequence z = (zk)

is complex-valued i.i.d. standard Gaussian (i.e., z = z0 + iz1 where z0 and z1 are two

independent vectors of i.i.d. N(0, 1/2) variables). In the case of real-valued Gaussian noise,

the sum of the chirplet costs along a path would not necessarily be distributed as a χ2

random variable.

8.1.3 Bounding the monoscale BP test under H0 using moderate devia-

tions for χ2

Here we provide an alternative way of bounding the monoscale BP statistic in the case of

complex-valued noise. We also give a lower bound on T ∗N which tells us that LN is the

correct rate the threshold T ∗N should be compared to. The bound is based on the following

lemma which can be found in [55]:

Lemma 7. Let Wd ∼ χ2
d be distributed as a chi-squared random variable with d degrees of

freedom. Then for each t > 0,

P (Wd − d ≥ t
√

2d+ t2) ≤ e−t2/2 and P (Wd − d ≤ −t
√

2d) ≤ e−t2/2.

Let (cv) be a sequence of chirplets along a chirplet path W . Let z = (zk) be a complex-

valued random sequence such that z = z0 + iz1 where z0 and z1 are two independent vectors

of i.i.d. N(0, 1/2) variables. Then, according to Lemma 29,

〈z, cv〉 = U1
v + iU2

v
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where (U1

v ) and (U2
v ) are independent sequences of i.i.d. N(0, 1/2) random variables. Then

it is clear that

2|〈z, cv〉|2 ∼ χ2
2

and

2
∑
v∈W
|〈z, cv〉|2 ∼ χ2

2L,

where we have written L = |W |. Assume there are less than KN · eγL chirplet paths of

length L. Take some η > 0. Then the first inequality of Lemma 7 with t =
√

2(γ + η)L

gives

P

(
2
∑
v∈W
|〈z, cv〉|2 ≥ 2L+ 2

√
2(γ + η)L+ 2(γ + η)L

)
≤ exp(−(γ + η)L),

or

P

(∑
v∈W
|〈z, cv〉|2 ≥ CL

)
≤ exp(−(γ + η)L)

where C = 1 + (γ + η) +
√

2(γ + η). Finally, by using a union bound, we have:

Lemma 8. Pick η > 0. Then there is a constant C > 0, such that

PH0 (T ∗N ≥ CLN ) ≤ pNe−ηLN ,

for any monoscale chirplet graph GN which has total number of chirplet paths less than or

equal to KN = pNe
γLN , where PN = o(Nβ) for some β > 0. C can taken to be C =

1 + (γ + η) +
√

2(γ + η).

Notice that the constant here is slightly better than in the bound of Theorem 10. The

lemma on moderate deviations of χ2 variables also gives us, with an overwhelming proba-

bility, that T ∗N cannot grow slower than LN under H0:

Lemma 9. For any t > 0,

PH0(T ∗N ≤ LN − t
√
LN ) ≤ e−t2/2.

Proof. Pick any chirplet path W of length L in the graph and let PW be as defined in the

proof of Theorem 10. Then, as we showed before the last lemma, 2‖PW z‖2 ∼ χ2
2L and the
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second inequality in Lemma 7 gives us

PH0(‖PW z‖2 ≤ L− t
√
L) ≤ e−t2/2

for any t > 0. On the event A := {T ∗ ≤ τ}, the event B := {‖PW z‖2 ≤ τ} must hold, so

P (A) ≤ P (B) which gives

PH0(T ∗ ≤ L− t
√
L) ≤ e−t2/2,

for any t > 0.

8.1.4 Bounds for the monoscale BP test under H1

Theorem 11. Fix s ∈ [2, 3] and let ρN = N
1
2s . Then there exists a sequence of monoscale

BP tests (T ∗N ) and a constant B > 0, such that for any sequence of signal amplitudes (αN )

satisfying

lim
N→∞

αN/ρN ≥ B,

the sequence of tests (T ∗N ) is asymptotically powerful for detection problem (8.1).

Proof. Let f = (fk) be the unknown chirp. We will choose a chirplet graph GN as described

in Section 8.1.1, but postpone the choice of the interval length |I| for now. By the definition

of the statistic T ∗N , we have

T ∗N ≥
∑
v∈W
|〈y, cv〉|2,

for any path W in the graph. Therefore,

P (T ∗N ≤ τ) ≤ P

(∑
v∈W
|〈y, cv〉|2 ≤ τ

)
, (8.4)

for any τ ∈ R. The next step is to choose a path W that gives a good bound for the

right-hand side of this inequality.

Assume that

αN ≥
√
NR|I|. (8.5)

Then, as a result of our choice of chirplet graph, there is a chirplet path W ∗ in GN such

that Corollary 2 from Section 6.2.3 holds, i.e., for every f ∈ CHIRP(s,N,R) there exists a
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chirplet path W ∗ in GN such that

∑
v∈W ∗

|〈f, cv〉|2 ≥ α2
N ·
(

1− C2 ·N2 · |I|2s
)
−NR2|I|2,

where the constant C = C(R) is as in Corollary 1. Choose the interval length |I| small

enough such that

C2 ·N2 · |I|2s = ε,

with 0 < ε < 1, i.e,

|I| = ε/C2 ·N−1/s. (8.6)

Then, ∑
v∈W ∗

|〈f, cv〉|2 ≥ α2
N · (1− ε)−NR2|I|2.

For this choice of interval length, the number of chirplet paths in the graph GN is

KN = B · exp
(
γ ·N1/s

)
,

for some positive constants B and γ (depending upon C and ε). Also, the number of chirplets

in each path is

LN = |I|−1 = A ·N1/s, (8.7)

where A = C2/ε. Pick η > 0 and choose the sequence of thresholds (τN ) for the tests T ∗N to

be

τN = (1 + ξ)2LN , where ξ =
√

2(γ + η).

Then by Theorem 10,

PH0(T ∗N > τN )→ 0, as N →∞.

The triangle inequality for vectors in Cn, (i.e., the special case of p = 2 and the counting

measure in Minkowski’s inequality) gives

( ∑
v∈W ∗

|〈f, cv〉|2
)1/2

=

( ∑
v∈W ∗

|〈y, cv〉+ (−〈z, cv〉)|2
)1/2

≤

( ∑
v∈W ∗

|〈y, cv〉|2
)1/2

+

( ∑
v∈W ∗

|〈z, cv〉|2
)1/2

.
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This, and the bound on the cost along the path W ∗, gives

( ∑
v∈W ∗

|〈y, cv〉|2
)1/2

≥
√
α2
N · (1− ε)−NR2|I|2 −

( ∑
v∈W ∗

|〈z, cv〉|2
)1/2

,

provided αN is big enough such that α2
N · (1− ε)−NR2|I|2 ≥ 0. Using (8.4), we get for any

τ ∈ R+,

P (T ∗N ≤ τ) ≤ P

( ∑
v∈W ∗

|〈y, cv〉|2 ≤ τ

)

≤ P

√α2
N · (1− ε)−NR2|I|2 −

( ∑
v∈W ∗

|〈z, cv〉|2
)1/2

≤
√
τ


= P

( ∑
v∈W ∗

|〈z, cv〉|2
)1/2

≥
√
α2
N · (1− ε)−NR2|I|2 −

√
τ

 .

Pick the constant D big enough so that for all

αN ≥ D ·
√
τN ,

the inequality

α2
N · (1− ε)−NR2|I|2 ≥ 4τN

holds. Such a constant exists, since for |I| ∼ N−1/s, we have τ ∼ N1/s and

NR2|I|2 ∼ N (s−2)/s = O(N1/s)

for all s ∈ [2, 3]. This also ensures that condition (8.5) is satisfied. This gives,

P (T ∗N ≤ τ) ≤ P

( ∑
v∈W ∗

|〈z, cv〉|2
)1/2

≥
√

4τN −
√
τN


= P

( ∑
v∈W ∗

|〈z, cv〉|2 ≥ τN

)
→ 0, as N →∞.

Thus, since τN ∼ N1/s, we have that the sequence of tests is asymptotically powerful if

αN ≥ D′N1/(2s), where D′ is a constant.
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8.2 An Upper Bound on Detection When the Chirp Regular-

ity is Unknown

Similar bound for guaranteed detection holds in the case when the regularity of the chirp

is unknown; i.e., the chirp belongs to CHIRP(s,N,R), but we only know that s ∈ [2, 3].

The reasoning we will give can be made more rigorous but instead we will attempt to keep

things simple to convey the idea behind the reasoning.

One strategy that works is based on considering a collection of monoscale chirplet graphs

which are defined in the same way as earlier, when s was assumed to be known. Let T ∗(L)

be the value of the best path in the chirplet graph GL with a uniform partition of L segments,

each of length |I| = L−1. The number of chirplet paths in GL does not exceed eγLL for some

constant γL > 0 independent of the signal length N . Let L = {L0, L0 + 1, . . . , L1}, where

L0 = bN1/3c and L1 = dN1/2e. Define the test statistic

T ∗∗N = max
L∈L

T ∗(L)
L

. (8.8)

This is a statistic of the same form as the Minimum-Cost-To-Time-Ratio (MCTTR) statistic

discussed in the chapter where the BP test was introduced. By Theorem 10, we have

PH0 (T ∗(L)/L > Cη(L)) = PH0 (T ∗(L) > Cη(L) · L) ≤ 2 · exp(−η · L),

for any η > 0 and a suitable constant Cη(L) > 0 independent of N . Let C = maxLCη(L).

Then, using the last inequality and a union bound, we get

PH0 (T ∗∗ > C) ≤
∑
L∈L

PH0 (T ∗(L)/L > C) ≤
∑
L∈L

2 exp(−η · L)

≤ 2L1 · exp(−η · L0).

Since L1 ∼ N1/2 and L0 ∼ N1/3, this probability tends to 0 as N → ∞. Therefore,

comparing T ∗∗ to a constant of size at least as big as C, we can ensure the probability

of type I error tends to 0 as N → ∞. The next step is to use the same argument as in

Theorem 11. If the regularity of the unknown signal is s, we know there is a graph in our

collection with partions of length |I| ≈ N−1/s. For any pathW in this graph and a threshold
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τ (could be constant),

P (T ∗∗ ≤ τ) ≤ P
(
‖PW y‖2/|W | ≤ τ

)
= P

(
‖PW y‖2 ≤ τ |W |

)
. (8.9)

Taking τ to be a constant bigger than C, the far right-hand side of (8.9) is of the same form

as we had in the proof of Theorem 11. Therefore, analogous arguments can be used here to

show that this probability goes to zero for a signal rate α ∼ N1/(2s) for the constant threshold

τ big enough. Therefore, (8.8) is asymptotically powerful for detecting chirps of unknown

smoothness s ∈ [2, 3], provided that the signal amplitudes (αN ) satisfy limN→∞ αN/N
1
2s ≥

B for a suitable constant B > 0.

The same statistic would also be asymptotically powerful under these same conditions

if we had considered dyadic lengths instead; i.e.,

L = {2j : bN1/3c ≤ 2j ≤ dN1/2e}.

The reason being that similar approximation bounds hold for approximating the chirps with

chirplet paths in graphs restricted to this set. Also, the same threshold works since we

are considering a subset of the statistics we had before. This would provide us with a test

procedure that would be computationally faster, since the number of different graphs to

consider would be O(logN) instead of O(N1/2).

Another type of statistic which has the same guaranteed performance, is based on con-

sidering chirplet graphs G with balanced recursive dyadic partitions (BRDPs). It is enough

to consider interval lengths satisfying |I| = 2−j such that bN−1/2c ≤ 2−j ≤ dN−1/3e. We

can discretize the slopes and the offsets of the chirplet dictionary such that the required

approximation bounds for the arguments of Theorem 11 are satisfied, and such that the

number of chirplet paths of length L in the graph is eγL –thanks to the BRDP condition.

Then we define the MCTTR statistic

T ∗∗∗ = max
W∈G

∑
W |〈y, cv〉|2

|W |
. (8.10)

Due to the bound on the number of chirplet paths in G of fixed length L, we can show that

T ∗∗∗ is greater than some fixed constant with probability going to zero as N → ∞. The

argument is similar to the one for (8.8).
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8.3 Is the Upper Bound Tight?

At this point it is natural to ask whether αN ∼ N1/(2s) is in fact the optimal rate for

asymptotically minimax detection. That is, whether every sequence of tests is asymptotically

powerless if

lim
N→∞

αN/N
1/(2s) < C, or αN = o

(
N1/(2s)

)
for some suitable constant C. The intuition behind the derivation for the upper bound is that

the best chirplet path is achieved for chirplet paths that are close to the true instantaneous

frequency of the unknown signal. If this was correct, one might expect the upper bound

to be tight enough. However, we will see evidence in the next chapter that this is might

not be the right intuition: at critical signal levels the best chirplet path typically deviates

considerably away from the “true path,” while the BP test can still detect the unknown signal

with almost full power. This could mean, that we have a regime where the signal is easily

detectable while it is not estimable; we could tell there is a chirp in the data but we cannot

be sure what it looks like. Such a remarkable phenomenon would be impossible in classical

parametric statistics because of the duality between statistical estimation and detection, but

has been found in various nonparametric statistical problems (see, for example, [33, 50]).

Based on numerical experiments for an abstraction of our detection problem, we have

reasons to believe there exists a rate ρN = o(N1/(2s)) such that if αN ∼ ρN , any sequence

of BP tests is asymptotically powerless, while there is a different sequence of tests that is

asymptotically powerful for this sequence signal levels αN . In other words, that the BP

test might not be asymptotically optimal (although, it could certainly be a very powerful

test for practical applications). We will discuss this further in the next chapter and in the

concluding remarks of the thesis.

8.4 The Abstraction Underlying the BP Test

There is an underlying abstraction behind our detection problem and the chirplet graph.

Consider the case when the unknown signal is of the form f(t) = exp(iNϕ(t)) where ϕ is a

Lipschitz function with a Lipschitz constant 1. Then Lemma 6 from Section 6.2.2 gives us

directions on how to configure the chirplet graph so that there is a chirplet path through

the graph that correlates well with the unknown chirp. The following two lemmas give us
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estimates for the size of the chirplet coefficients close to and away from the instantaneous

frequency of the chirp (see Appendix C.8 and Appendix C.9 for proofs).

Lemma 10. Let f(t) = exp(iNϕ(t)) with ϕ ∈ HÖLDER2(R) and c(t) = 1I(t) exp(iNbt).

Assume that for all t ∈ I, |ϕ′(t)− b| ≤ ∆ω where 0 < ∆ω ≤
√

2N−1|I|−1. Then

|〈f, c〉| ≥
(
1− (N∆ω|I|)2/2

)
· ‖I‖.

Lemma 11. Let f(t) = exp(iNϕ(t)) with ϕ ∈ HÖLDER2(R) and c(t) = 1I(t) exp(iNbt).

Assume there exists some ∆ω > 0 such that |ϕ′(t)− b| ≥ ∆ω for all t ∈ I. Then

|〈f, c〉| ≤ 1
N∆ω

(
2 +R · |I|

∆ω

)
.

Assume the same chirplet coefficient discretization and chirplet graph as in Lemma 6

from Section 6.2.2. This is a very simple configuration: every chirplet is monochromatic and

connects to two other chirplets to the right, one with a slightly higher frequency and the

other with a slightly lower frequency (Figure 9.1 in the next chapter can give a diagrammatic

idea of the topology of this graph). Choose the interval length in the uniform partition such

that

|I| ∼ N−1/2

and define

∆ω := (1/2 + π)|I| <
√

2N−1|I|−1.

Consider the data

yt = µft + zt,

where µ > 0, ft = exp(iNϕ(t))/‖I‖ and zt is a sequence of noise.

According to Lemma 6 there exists a chirplet pathW in the graph, such that |ϕ′(t)−bv| ≤

∆ω for all t ∈ Iv, where Iv is the support of the chirplet cv(t) = exp(iNbvt) · 1Iv(t)/‖I‖ for

v ∈W . Then according to Lemma 10, we have

|〈f, cv〉| ≥ (1− ε), for v ∈W,

where 0 < ε < 1. Pick a chirplet v ∈W of frequency bv = 2π|I| ·m1, (or bv = 2π|I| · (m1 +
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1/2)), for some integer m1. For a chirplet cu with the same support but different frequency

bu = 2π|I| ·m2, (or bv = 2π|I| · (m2 + 1/2)), we have

|bv − bu| ≥ C1 ·∆m|I|,

where ∆m = |m1 −m2| ∈ Z+ and C1 is some positive constant. Then

|ϕ′(t)− bv| > C2∆m|I|,

for some constant C2. Therefore, by Lemma 11,

|〈f, cu〉| ≤ C3 ·
1

∆m
,

for some constant C3. Note that

|〈y, cv〉|2 = (µβ1 +W1)2 + (µβ2 +W2)2,

where W1,W2 are i.i.d. N(0, 1/2) and 〈f, cv〉 = β1 + iβ2. Then we have:

• Under H0, the chirplet costs at the nodes in the graph are distributed as 1
2χ

2
2.

• Under H1, there is a path W through the graph nodes such that E|〈y, cv〉|2 ≈ µ + 1

for v ∈W and E|〈y, cv〉|2 decreases as we move away from W .

For our choice of the discretization, the chirplets are all close to being orthogonal, so the

chirplet costs are close to being independent. Also, under H1 we have for µ = o(1) that away

fromW , the chirplet costs are roughly identically distributed as the chirplet costs under H0.

This leads us to an abstract formulation of our detection problem. Consider a graph G

and associate a random variable Yv = βv + Xv to each node v ∈ G, where Xv ∼ F with

E(Xv) = 0. Assume that the random variables are independent. Then we consider two

situations:

• H0 : all the nodes have mean zero; i.e., βv = 0 for all v ∈ G.

• H1 : there is a sequence of connected nodes W in G such that

βv = µ, for v ∈W, and βv = 0, for v /∈W.
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What would be a good test for deciding between H0 and H1 and what are the limits of

performance for this problem? This is the topic of the next chapter.
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Chapter 9

Path Detection in Graphs

Consider a graph with a set of vertices and oriented edges connecting pairs of nodes according

to some prescribed rule. Associate a random variable to each vertex. This chapter studies

the problem of deciding between two hypothesis:

• Under H0, the random variables have a common distribution F0.

• Under H1, there is an unknown path of connected nodes in the graph along which the

random variables have a common distribution F1, different from F0. Away from the

path the distribution is F0.

We will consider the case when F0 is the standard normal distribution and F1 is a distribution

of a normal variable with mean µ > 0 and variance 1, and all the random variables are

independent. We pose the questions: (i) for which values of µ can we detect a presence of

a path in the graph, (ii) for which values is it impossible for any method, and (iii) what are

the methods that achieve the limits of detectability?

9.1 The Setup

The answers to statistical questions regarding path detection in graphs depend, of course, on

the type of graph one considers. We will consider two graphs that are very closely related.

Below we let m be a positive integer.

• Square lattice. The first model is a directed graph with m×m nodes. We index the

nodes by (j, k), j, k ∈ {1, . . . ,m} and there is an arc emanating from the node (j1, k1)

to (j2, k2) if and only if j2 − j1 = 1 and |k2 − k1| = 1 modulo m. See Figure 9.1 for a

sketch of the nodes and edges for this graph.
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m

m

Figure 9.1: Representation of the square lattice. The dotted lines represent the periodic connectivity
requirement.

• Triangular lattice. The second graph is a triangular lattice with vertices

V = {(i, j) : 0 ≤ i, −i ≤ j ≤ i and j has the parity of i},

and with oriented edges (i, j)→ (i+ 1, j + s) where s = ±1. We call (0, 0) the origin

of the graph.

Define the length of a path as the number of nodes the path visits. For the square lattice,

the nodes indexed with (1, k), k = 1, . . . ,m, are called start-nodes and the nodes indexed

with (m, k), k = 1, . . . ,m, are called end-nodes. A path in the square lattice is a set of

connected vertices starting from a start-node and ending at an end-node. Let Psm denote

the set of all such paths. In the case of the triangular lattice, we let Ptm be the set of paths

in the graph starting at the origin and are of length m. (We drop the superscript when there

is no ambiguity.) Notice the periodicity in the definition of the square lattice and that Ptm
can be considered to be a subgraph of Ps2m.
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For a graph with the set of vertices V and paths Pm, associate a random variable Xv

to each vertex v ∈ V . Based on the observation {Xv : v ∈ V } we wish to test the following

two hypotheses:

• Under H0, all the Xvs are i.i.d. N(0, 1).

• Under H1,m, all the Xvs are independent; there is an unknown path p ∈ Pm along

which the Xvs are i.i.d. N(µm, 1), µm > 0, while they are i.i.d. N(0, 1) away from the

path.

To study the quality of the tests for this problem we need to choose a criterion. Statistical

decision theory provides us with the minimax and Bayesian paradigms which we will briefly

review in the following section.

9.2 Statistical Preliminaries

Consider the statistical hypothesis testing problem where we want to decide between the

simple hypothesis H0 and the composite alternative hypothesis H1, where we denote Θ1,m

as the set of simple hypotheses that H1,m is composed of. Let the decision rule Tm be a

measurable function of the observed random variables, where Tm takes values in the set

{0, 1}. If Tm = 0, we decide that H0 is true, otherwise, if Tm = 1, we decide that H1 is true.

There are two types of paradigms we wish to study:

• Minimax Testing, where we define the risk of the test Tm to be

γ(Tm) = P (Type I) + sup
θ∈Θ1,m

Pθ(Type II)

• Bayesian Testing, where we define the risk of a particular test Tm to be

γπ(Tm) = P (Type I) + EπP (Type II)

where π is the prior on the alternative.

In our situation, Θ1,m = Pm, Tm is a measurable function of {Xv}v∈V , and π is a prior

distribution on the set of paths. Recall that P (Type I) = PH0(Tm = 1) and P (Type I) =
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Pθ(Tm = 0). We say {Tm} is asymptotically powerful if

γ(Tm)→ 0, as m→∞

and asymptotically powerless if

γ(Tm)→ 1, as m→∞,

where we omitted the subscript π in the case of Bayesian testing. We say the two hypotheses

are indistinguishable if γ(Tm)→ 1 as m→∞ for every test Tm.

9.2.1 Bayesian testing

By writing Pπ(A) = EπP (A), A ∈ A, the Bayes problem reduces to the simple vs. simple

hypothesis test, H0 : P0 vs. H1 : Pπ. In terms of the likelihood ratio Lπ := dPπ/dP0 the

Bayes risk can be written as

B(π) = 1− 1
2
EP0 |Lπ − 1|

The indistinguishability condition B(π) → 1 holds if and only if EP0 |Lπ − 1| → 0. This

quantity is often difficult to investigate analytically but sometimes it is possible to get results

from looking at the sufficient condition

EP0(Lπ − 1)2 → 0.

Indeed, since V ar(X) ≥ 0 for any random variable X (this is essentially a consequence of

Jensen’s inequality) and therefore EP0 |Lπ − 1| ≤ (EP0(Lπ − 1)2)1/2. Thus,

B(π) ≥ 1− (EP0(Lπ − 1)2)1/2.

Remark that EP0L = 1 so EP0(Lπ − 1)2 = EP0L
2
π − 1 and the sufficient condition becomes

EP0L
2
π → 1.
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9.2.2 The Bayes test for the square lattice

The best test (the one that minimizes the Bayes risk) is given by the Neyman-Pearson test:

L =
∫
dPθ
dP0

π(dθ).

Fix a path θ. Then

dPθ
dP0

=
Πi,j exp

(
−1/2(xij − µθij)2

)
Πi,j exp

(
−1/2x2

ij

) = e−
1
2
mµ2

eµ〈x,1θ〉

and

L = e−
1
2
mµ2

∫
eµ〈x,1θ〉π(dθ).

The Bayes test rejects when L exceeds a threshold. It is hard to analyze L directly. Note

that the Bayesian assumes the value of the mean µ along the unknown path to be known.

9.2.3 The Bayes test for a uniform prior on paths

Consider the square lattice and assume a uniform prior on the paths in the graph. That

is, a path is a symmetric random walk with uniformly distributed start-node. To study

the indistinguishability condition in the Bayes problem we study the second moment of the

likelihood ratio. First we have

L2 =
∫∫

e−
1
2
mµ2

eµ〈x,1θ〉e−
1
2
mµ2

eµ〈x,1θ′ 〉π(dθ)π(dθ′) = e−mµ
2

∫∫
eµ〈x,1θ+1θ′ 〉π(dθ)π(dθ′).

For a random vector Z with iid N(0, 1) entries and a fixed vector v of the same size we have

E
(
eµ〈Z,v〉

)
= eµ

2‖v‖2/2.

Also, ‖1θ + 1θ′‖2 = 2m+ 2〈1θ, 1θ′〉 which gives

EP0L
2 = e−mµ

2

∫∫
eµ

2‖1θ+1θ′‖2/2π(dθ)π(dθ′)

=
∫∫

eµ
2〈1θ,1θ′ 〉π(dθ)π(dθ′).
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This is the moment-generating function of the number of crossings of two independent

random walks, Si and S′i on the graph. Then we have

EP0(L− 1)2 = Ee
µ2

P
i 1{Si=S′i} − 1.

9.3 A Bayes Problem for the Square Lattice

Clearly our ability to detect depends on prior knowledge about the paths in the alternative

hypothesis. Here we will study the case where the prior distribution of the paths in the

alternative hypothesis is such that all paths are equally likely. First we choose the starting

node uniformly at random and then we let the path be a random walk, where at each node

it is equally likely to go up or down in the next step. That is, we want to decide between

the following two hypotheses

H0 : Yj,k i.i.d N(0, 1) vs. Hθ : Yj,k i.i.d N(µ1θ(j, k), 1)

where θ is a random walk path as described above, and 1θ(j, k) is 1 if the node (j, k) is on

the path and 0 otherwise.

Next we want to study the threshold phenomenon in this Bayesian testing problem. That

is, find the rate εm such that

• If µm/εm → 0 then γ → 1; the two hypotheses are indistinguishable.

• If µm/εm →∞ then there is a test with γ → 0.

Theorem 12. Consider the square lattice and assume the uniform prior on paths. If

µm/(m−1/4
√

logm)→∞ as m→∞, then the Bayes risk tends to 0. If µm/m−1/4 → 0 as

m→∞, the Bayes risk tends to 1.

Notice the gap between the bounds which we comment briefly on at the end of the proof of

the lower bound in Section 9.3.2.

9.3.1 Proof of Theorem 12: upper bound

Let hm be an arbitrary sequence of real numbers tending to infinity and define B(i, hm) to

be a set of nodes in a strip of length m and width about
√
m, and centered around j = i;
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i.e.,

B(i, hm) := {(j, k) ∈ V : |k − i| ≤ hm
√
m, where k − i is calculated modulo m}.

Let Nm,i be the number of nodes in B(i, hm) and define Bm,i to be the normalized sum of

the variables in this strip,

Bm,i = 1/
√
Nm,i

∑
v∈S(i,hm)

Xv.

Our test statistic is the maximum of those sums,

Tm = max{Bm,i : i = 1, . . . ,m},

and our test rejects H0 for large values of Tm. For m random variables Y1, . . . , Ym, such

that Yk ∼ N(0, σ2
k), σk ≤ σ for all k = 1, . . . ,m, we have

P
(

max{Y1, . . . , Ym} >
√

2 log(m) · σ
)
≤ 1√

4π log(m)
.

This is a well-known inequality and follows from the Gaussian tail bound,

P (Yk > u) ≤ σk√
2πu

e−
1
2
u2/σ2

k , for all u > 0,

and a union bound. Under H0, Bm,i ∼ N(0, 1), so this inequality gives us

P0

(
Tm >

√
2 log(m)

)
≤ 1√

4π log(m)
.

Choose the threshold tm =
√

2 log(m). The last inequality shows that P0(Tm > tm)→ 0 as

m →∞. Now assume H1 holds and let p be the hidden path. Then with high probability,

the path is contained within a strip that is centered at the starting node of p.

Let the starting node of p be i and consider the strip B(i, hm). Let Lp be the number

of nodes in the path p that are in this strip. Then,

Bm,i = µ

√
Lp√
Nm,i

+ Z, Z ∼ N(0, 1).



168
Writing Nm = max{Nm,1, . . . , Nm,m}, we have

Pp (T ∗m < tm) ≤ Pp (Bm,i < tm) ≤ Pp
(
Z < tm − µmLp/

√
Nm

)
= P

(
Z < tm − µmLp/

√
Nm | Lp = m

)
P (Lp = m)

+P
(
Z < tm − µmLp/

√
Nm | Lp < m

)
P (Lp < m)

≤ P
(
Z < tm − µm ·m/

√
Nm

)
+ P (Lp < m).

The next steps are to show that both of the terms on the far right-hand side tend to zero

for sequences (µm) such that µm/(m−1/4
√

logm)→∞ as m→∞.

First notice that P (Lp < m) is equal to the probability that the oriented symmetric

random walk (k, Sk)1≤k≤m, starting at i, steps outside the strip B(i, hm). We can assume

the walk starts at 0 and find the probability of the event Em = {max1≤k≤m |Sk| > hm
√
m}.

Recall Kolmogorov’s inequality [37]:

Lemma 12 (Kolmogorov’s Inequality). Let X1, . . . , Xm be mutually independent random

variables with expectations µk = E(Xk) and variances σ2
k. Put Sk = X1 + · · · + Xk and

mk = E(Sk) = µ1 + · · ·+ µk, s2
k = V ar(Sk) = σ2

1 + · · ·+ σ2
k. For every t > 0 the following

inequality holds

P

(
max

k∈{1,...,m}
|Sk −mk| < tsm

)
≥ 1− t−2.

In case of our random walk, mk = 0 and s2
m = m and therefore P (Em) ≤ h−2

m . Thus,

for any sequnce (hm) tending to infinity,

lim
m→∞

P (Em) = 0.

(We could also use the reflection principle and Hoeffding’s inequality to prove this.)

For the other term, note that Nm = hmm
3/2(1 + o(1)). Then as long as µmm1/4h

−1/2
m

grows faster than tm =
√

2 log(m), P
(
Z < tm − µm ·m/

√
Nm

)
→ 0 as m → ∞. Under

the assumption µm/(
√

log(m) ·m−1/4) → ∞, we can find a sequnce hm → ∞ so that this

condition holds. Therefore, the test Tm is asymptotically powerful, which completes the

proof of the upper bound.
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9.3.2 Proof of Theorem 12: lower bound

Recall that EP0(L−1)2 = Ee
µ2

P
i 1{Si=S′i} −1. In what follows, we write t := µ2. Define the

event when the two random walks meet at time i as Ii := {Si = S′i} and let Xk = Sk − S′k,

modulo m. Then for integers r, s,

P (Xk = r | Xk−1 = s) =


1/4 if r = s± 1 mod m

1/2 if r = s mod m

0 otherwise.

Define

Ek,j := E
[
et

Pm
i=k 1Ii | Xk = j

]
where we take the index j modulo m. Consider the following two cases:

(i) j 6= 0: Then if Xk−1 = j we have 1Ik−1
= 0 and

Ek−1,j = E
[
et

Pm
i=k−1 1Ii | Xk−1 = j

]
= E

[
et

Pm
i=k 1Ii | Xk−1 = j

]
=

m−1∑
r=0

E
[
et

Pm
i=k 1Ii | Xk−1 = j,Xk = r

]
P (Xk = r | Xk−1 = j)

=
1
4
Ek,j+1 +

1
2
Ek,j +

1
4
Ek,j−1.

(ii) j = 0: Then if Xk−1 = j we have 1Ik−1
= 1 and

Ek−1,j = E
[
et

Pm
i=k−1 1Ii | Xk−1 = j

]
= etE

[
et

Pm
i=k 1Ii | Xk−1 = j

]
= et

(
1
4
Ek,j+1 +

1
2
Ek,j +

1
4
Ek,j−1

)
.

Next we define the column vector Ek = [Ek,0, Ek,1, · · · , Ek,m−1]T and let P = [pij ] be

an m × m matrix with 1/2 on the diagonal, 1/4 on the super- and subdiagonals, and

p1m = pm1 = 1/4. Let the vector q = [1, 0, . . . , 0]T be a column vector of length m and
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define the m×m matrix Q = qqT . That is:

P =



1/2 1/4 0 · · · 0 1/4

1/4 1/2 1/4
. . . 0 0

0 1/4 1/2
. . . . . .

...
...

. . . . . . . . . . . . 0

0 0
. . . . . . 1/2 1/4

1/4 0 · · · 0 1/4 1/2


Q =


1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 .

This matrix notation allows us to combine the formulas from cases (i) and (ii) into a nice

recursion relation:

Ek−1 = PEk + (et − 1)QPEk

= (P + λQP )Ek,

where λ := et − 1. Since

Em,j = E
[
et1Im | Xm = j

]
=


et if j = 0

0 otherwise

we have Em = 1 + λq, and therefore

E1 = (P + λQP )m−1Em

= (P + λQP )m−1(1 + λq).

For a vector v = [v1, . . . , vn]T , define Ave(v) to be the average of its entries; i.e.,

Ave(v) :=
1
n

n∑
k=1

vk.

Then by the law of total expectation

E
[
et

Pm
i=1 1Ii

]
= E

[
E
[
et

Pm
i=1 1Ii | X1

]]
= Ave(E1)

= Ave
(
(P + λQP )m−1(1 + λq)

)
.
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Next we have to study the conditions on the growth of λ as m → ∞ for this last quantity

to tend to 1. Instead of studying Ave
(
(P + λQP )m−1(1 + λq)

)
, we can equivalently study

Ave ((P + λQP )m(1 + λq)). Indeed,

Ave
(
(P + λQP )m−1(1 + λq)

)
≥ Ave

(
Pm−11

)
= 1

since all the terms dropped where positive and the matrix P is stochastic. Now since

(P + λQP )(1 + λq) = 1 + 3/2λq,

we have

(P + λQP )m(1 + λq) = (P + λQP )m−1(1 + λq) + (P + λQP )m−11/2λq.

By dropping positive terms, we get

Ave
(
(P + λQP )m−1(1 + λq)

)
≤ Ave ((P + λQP )m(1 + λq)) .

In order for this average to go to 1, we have the following sufficient condition on the rate of

λ = λm. It is established in Appendix C.10.1:

Lemma 13 (A sufficient condition for the rate of λ). If λm = o
(

1√
m

)
,

lim
m→∞

Ave ((P + λmQP )m(1 + λmq)) = 1.

Since t = log(1 + λ) = λ+ o(λ), as λ→ 0, and µ2 = t, we get that if µm = o(n−1/4),

E
[
eµ

2
m

Pm
i=1 1Ii

]
→ 1, m→∞,

which concludes the proof of the lower bound in Theorem 12.

We also have the following lemma which is not needed for the result and is simpler to

establish than Lemma 13 (see Appendix C.10.2 for a proof). It gives us a restriction on the

rate of λ for the average to go to zero:

Lemma 14 (Necessary condition for the rate of λ). Let ρm = log(m)/
√
m. If limm→∞ λm/ρm >
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1/2, then

lim
m→∞

Ave ((P + λmQP )m(1 + λmq)) > 1.

If the upper bound we have established gives the correct rate, Lemma 14 might tell us

that it could be hard to improve the lower bound based on analyzing E0(Lm − 1)2 directly.

Also, remember that in bounding the Bayes risk, we used the inequality E0|Lm − 1| ≤

(E0(Lm − 1)2)1/2 and hoped there was enough justice in the world, so that studying the

variance of the Bayes statistic would still give us a tight bound (which it does in many

nonparametric statistical problems [50]).

9.4 The GLRT for Path Search

Perhaps the first test that comes to mind for path detection in graphs is the likelihood ratio

test (GLRT), which would reject H0 for large values of Mm = max{Sp : p ∈ Pm}, where Sp

is the sum of the node variables along the path p:

Sp =
∑
v∈p

Xv. (9.1)

This test makes sense intuitively, and is also attractive from a practical point of view, as it

can be calculated rapidly by dynamic programming. Note that the monoscale BP test is of

this form, and therefore by studying Mm we could hope to understand the BP test better.

Empirically, we have seen that for the square lattice under H0, Mm/m gets highly

concentrated around a value close to 0.87 as we let m grow. This suggests that the statistic

should be compared to a constant. Using the following lemma we can identify a sufficient

condition for the GLRT to be asymptotically powerful.

Lemma 15. Under H0, we have for any ε > 0,

Mm/m ≤
√

2(log 2 + ε),

with probability exceeding 1− Ce−λm, for some positive constants C and λ depending on ε.

Lemma 15 tells us that if we compare the GLRT to a constant threshold τm := m
√

2 log(2 + ε),

ε > 0, the probability of Type I error goes to zero as m→∞. Now assume that H1 with p∗
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as the true path and µ is the mean. Then

Sp∗ = µm+
√
mZ,

for some random variable Z ∼ N(0, 1). Since Mm ≥ Sp∗ , we have

Pp∗(Mm < τm) ≤ Pp∗(Sp∗ < τm) = P
(
Z < (

√
2 log(2 + ε)− µ)m1/2

)
,

which tends to zero if µ >
√

2 log(2 + ε). This holds, no matter which path in the graph we

take. Now we ask, can the GLRT still detect when µm → 0 at a slow enough rate? Although

a confirmed answer remains to be given, our numerical simulations in Section 9.6 provide

evidence that the answer is positive for our Bayesian setting with uniform prior on paths.

They also indicate that the GLRT does not achieve the optimal threshold. However, in case

of the minimax problem, the simulations hint that the answer is negative and the threshold

of detectability for the GLRT is for a constant µm. That would also mean that, at least in

the case of the triangular lattice, the GLRT is not optimal for the minimax problem, since,

according to Section 9.5, there exists a test which can detect when µm → 0 for the minimax

problem.

Proof of Lemma 15: For a random variable X ∼ N(0, σ2) we have the classical bound

P (X > u) ≤ σ

u
√

2π
e−u

2/(2σ2), u > 0. (9.2)

Consider first the square lattice and note that the number of paths in Psm ism·2m−1; indeed,

since there are m choices for the starting node and 2 choices at each of the m− 1 steps after

that. The sum Sp from (9.1) is distributed as N(0,m). Then for any t > 0, inequality (9.2)

with u = mt, and a union bound give us

P (S∗m > mt) = P (max{Sp : p ∈ Pm} > mt)

≤ m · 2m−1 ·
√
m

mt
√

2π
exp(−mt2/2)

=
√
m

t2
√

2π
· exp(−mt2 + 2 log(2)m/2).

Choose t =
√

2(log 2 + ε) for some ε > 0. Then there exist positive constants C and λ such
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that the inequality

P (S∗m/m > t) ≤ C · e−λm,

holds 1.

The proof is basically identical for the triangular lattice where the number of paths in

Ptm is equal to 2m−1.

9.4.1 Numerical simulations for the GLRT in the square lattice

Here we briefly explore the behavior of the path that maximizes the sum of paths over all

graphs in the graph. That is the path p∗ = arg max {Sp : p ∈ Pm}, so that the GLRT is

Mm = Sp∗ , where Sp is, as before, the sum of the node variables along the path p. We call

p∗ the Best Path in the graph.

We consider the Bayes problem for the square lattice of size m×m where m = 1024. For

each realization under H1, the starting position of the path is sampled uniformly at random

and a random walk is generated for the subsequent steps of the path. We fix the probability

of Type I error at 5%. Based on 10,000 realizations of the node variables {Xv : v ∈ V }

under H0, we determined that this significance was achieved for threshold τ ≈ 0.897m, so

our test compared Mm/m to the value 0.897. Figure 9.2 shows the histogram of Mm/m

based on these realizations.

We are interested in knowing what the Best Path looks like under H1 in a situation

where the mean µ along the true path is critical for the GLRT; i.e., it is close to the limit

of the test being able to reliably detect. Figure 9.3 shows a realization of a path drawn

according to our Bayes prior. Figures 9.4, 9.5, 9.6, and 9.7 show comparisons of the real and

best path for µ = 2, 1, 0.6, and 0.5 respectively; the same realization of the node variables

was used in every case and the true path was the path on Figure 9.3.

In all of these cases, the GLRT would have decided that there was a signal present in

the graph, but only barely in the case where µ = 0.5. The estimated P -values 2 for the two

critical values of means, µ = 0.6 and 0.5, were 4 ·10−4 and 0.031 respectively. Thus, at least

for µ = 0.6 there is a strong evidence against H0. Based on the histogram, we are able to

detect a path for a mean that is far below the bulk of the distribution of Mm/m under H0.
1This gives us some more information. Define the event Em := {S∗m/m > t}. Then using our bound we

get that the sum
P∞
m=1 P (Em) is convergent, and therefore by the Borell-Cantelli lemma we have for any

ε > 0, lim supm→∞ S
∗/m ≤

p
2(log 2 + ε) almost surely under H0.

2Here the P -value is PH0(Mm > Mobs
m ), where Mobs

m is the observed value of the GLRT statistic.
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Figure 9.2: Histogram of Mm/m based on 10,000 realizations under H0

The interesting observation is, however, that the path which provides this evidence has only

about 20% nodes in common with the true path! Although we can strongly reject H0, we

would not be able to provide a reasonable estimate of the underlying path.

9.5 The Triangular Lattice

Here we will briefly review the results that were established in [9] for the triangular lattice.

There the path detection problem was studied in both the minimax and Bayesian decision

theoretic frameworks. In the Bayes case, where one assumes that all the paths are equally

likely, the Bayes statistic is given by

Lm = 2−(m−1)
∑
p∈Pm

eµSp−mµ
2/2, (9.3)

where Sp is defined in (9.1), and we have:

Theorem 13. Consider the triangular lattice and assume the uniform prior on paths. If

µmm
1/4 → ∞ as m → ∞, then the Bayes risk tends to 0. Conversely, if µmm1/4 → 0 as

m→∞, the Bayes risk tends to 1.
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Figure 9.3: A plot of the sample path drawn from the uniform prior. Note that we only plot
a portion of the vertical axis.
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Figure 9.4: A plot of the best path and true path for µ = 2. For this realization Mm/m ≈
2.00 and the overlap is about 96%.
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Figure 9.5: A plot of the best path and true path for µ = 1. For this realization Mm/m ≈
1.13 and the overlap is about 70%.
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Figure 9.6: A plot of the best path and true path for µ = 0.6. For this realization Mm/m ≈
0.92 and the overlap is about 20%.
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Figure 9.7: A plot of the best path and true path for µ = 0.5. For this realization Mm/m ≈
0.90 and the overlap is only about 12.5%.

Unlike our results for the square lattice, this time we know the optimal detectability

threshold; if the unknown path is chosen uniformly at random, it is possible to detect it as

long as the mean of the nodes along the path exceeds m−1/4, while no method can detect if

it is below this level. Note that the Bayes test assumes the value of the mean µ along the

unknown path to be known while the strip statistic used to construct the upper bound does

not need that information.

The upper bound in Theorem 13 was established using a similar kind of a “strip” or

“box,” as in the proof of the upper bound in Theorem 12. As expected, it is only required

to sum the values of random variables in single strip centered at the origin of the lattice.

Contrary to the square lattice where the starting location of the path is unknown, the test

does not have to “pay the price” of a logarithmic factor for multiple comparisons of strips.

For the case for minimax detection, the following theorem was established3:

Theorem 14. Consider the triangular lattice. Suppose that µm (logm)1/2 →∞ as m→∞.

Then there is a sequence of tests which is asymptotically powerful. On the other hand,
3I would like to make clear that the theoretical result for the minimax problem is due to my coauthors

and I cannot claim credit for it.
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suppose that µm logm (log logm)1/2 → 0 as m → ∞. Then every sequence of tests (Tm) is

asymptotically powerless.

Theorem 14 says that it is possible to detect a path as long as µm � (logm)−1/2, and

impossible if µm < (logm)−(1+ε) for each ε > 0 and m sufficiently large. Notice the slight

“gap” between the upper and lower bound that would need to be closed to decide the actual

threshold of detectability. We also see that these rates are quite different than for our Bayes

problem. This also tells us that the uniform prior on the paths is quite far from being a

“difficult” prior, in the sense that it does not provide us with a good lower bound for the

minimax problem.

To prove the upper bound in Theorem 14 the following test statistic was used:

Tm =
∑

(i,j)∈V

wi,jXi,j , wi,j := wi =
λm
i+ 1

, (9.4)

with λm chosen such that
∑

iwi = 1. With this choice λm ∼ (logm)−1. Thus, Tm is a

simple weighted average of the values at the vertices of the graph. Since this statistic is a

sum of i.i.d. Gaussian random variables, it is easy to analyze: Under H0,

Tm ∼ N(0, λm),

and for any alternative,

Tm ∼ N(µm, λm).

Hence, this statistic could not care less what the path looks like, only that it is contained in

the triangular lattice. Therefore it does not use the information that the path is continuous!

Therefore it can detect any sequence of the form {(i, pi) : 0 ≤ i ≤ m − 1} provided that

(i, pi) is a vertex in the graph and µm(logm)1/2 →∞ as m→∞. This turns out to be the

minimax detection threshold for detecting the presence of such sequences in the triangular

lattice. It would be quite surprising if the upper bound in Theorem 14 was tight, since it

would essentially mean that the continuity of the path does not really help to enhance the

detection.

The lower bound in Theorem 14 uses a delicate construction of a Bayes prior based on

the concept of a predictability profile which was first introduced in [15]. It tells how hard it

is to predict a future location of a stochastic process from its current state and history. The
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formal definition is:

Definition 5. The predictability profile of a stochastic process (Sn)n≥1 is defined by

PRES(k) = supP (Sn+k = x |S0, . . . , Sn), (9.5)

where the supremum is taken over all positions and histories.

The strategy was then to construct a prior on the family of paths with a low predictability

profile.

9.6 Numerical Simulations for Detection in the Triangular

Lattice

We now explore the empirical performance of some of the detection methods that have been

proposed for the case of the triangular lattice. The cost at the vertices are independent

Gaussians. To measure the performance, we fix the probability of Type I error at 5% and

estimate the detection rate, the probability of detecting a path when there is a path in the

graph whose vertices have a non-zero mean µ. The path used in each realization will be

randomly sampled according to some specific prior. The detection rates were estimated for

a set of means, µ, close to the transition between a poor and a nearly perfect detection.

9.6.1 Bayesian detection under the uniform prior

We first consider detection under the uniform prior on paths. We will compare the perfor-

mance of the corresponding Bayes test, the GLRT and the test based on the Strip statistic,

used in the proof of the upper bound in Theorem 12. Remember that the Bayes test is op-

timal in this setting and that the Strip statistic was shown to achieve the optimal detection

rate. However, we were unable to theoretically analyze the performance of the GLRT in this

situation and would like to do so here through simulations.

9.6.1.1 Simulating the Bayes statistic

Let Y (v) =
∑

p∈P(v) e
µSp , where P(v) is the set of all paths in the lattice starting at (0, 0)

and ending at the vertex v and Sp is defined in (9.1). Take a vertex v0 = (i, j) whose
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predecessor vertices are v1 = (i− 1, j − 1) and v2 = (i− 1, j + 1). Then,

Y (v0) = eµXv0 (Y (v1) + Y (v2))

where Xv0 is the cost at the node v0. Utilizing this recursion formula we can efficiently

calculate the Bayes statistic (9.3). To simulate the Bayes statistic for fixed µ and m under

H0 and H1, we used 2,000 realizations in each case.

9.6.1.2 Simulating the Strip statistic

For a graph Gm and a positive integer B the strip statistic, Tm,B, is the sum of the random

variables that fall in the centered strip of length m and width 2B + 1, or

Tm,B =
∑

0≤i≤m−1

∑
j:|j|≤min(i,B)

Xi,j .

We know the distribution of this statistic under H0 since the variance σ2
m,B is nm,B, the

number of vertices in the strip, and therefore Tm,B ∼ N(0, nm,B). Under H1 we let Rm,B

be the number of vertices inside the strip that the random walk {Sk}0≤k≤m−1 visits. If the

mean along the random path is equal to µ, we observe that

Tm,B = µRm,B +W,

where W ∼ N(0, nm,B) and W and Rm,B are independent. Therefore, we simulate Tm,B by

taking one realization of Rm,B, multiplying it by µ and adding a realization of W .

To choose the width of the strip, we ran simulations for B = ν
√
m for ν = 0.75, 1, 2, 3.

Among these values and the graph sizes we simulated for, B = 2
√
m gave the best perfor-

mance. To estimate the detection rate for fixed µ and m we used 5,000 realizations of the

test statistic.

9.6.1.3 Simulating the GLRT

The GLRT statistic rejects the null hypothesis for large values of Mm = max{Xp : p ∈ Pm}.

This statistic can be calculated rapidly using dynamic programming. For each graph size,

the threshold corresponding to approximately 5% Type I error probability and the detection

rate for fixed µ were based on 10,000 and 1,000 realizations, respectively.
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m 1,025 2,049 4,097
µ.95 0.37 0.31 0.26

Table 9.1: The value of µ giving detection rate about 95% using the Bayes test when the unknown
path is sampled uniformly over all paths

m 1,025 2,049 4,097 8,193 16,385
µ.95 0.84 0.69 0.59 0.51 0.42

Table 9.2: The value of µ giving detection rate about 95% using the Strip statistic test with width
2B + 1, B = 2

√
m, when the unknown path is sampled uniformly over all paths

9.6.1.4 Comparing the tests

From plots of the detection rates versus the mean µ (similar to figure 9.11), we can estimate

µ.95, the mean µ which gives the detection rate of about 95%. Tables 9.1, 9.2, and 9.3

show µ.95 for different graph sizes for the Bayes test, the test based on the Strip statistic,

and the GLRT, respectively. As expected, the Bayes test performs better than the others,

but the reader should recall that the latter two tests do not require information about the

parameter µ, while the Bayes test does. Figure 9.8 shows log2(µ.95) plotted versus log2(m)

with least-squares line fit to the data. The slope of the line is about -0.255 in the case of the

Bayes test and about -0.246 in the case of the test based on the Strip statistic. Both of these

values are quite close to the −1/4 exponent in Theorem 13. In the case of the GLRT the

slope is about -0.16, perhaps suggesting, that for a big enough graph, the Strip statistic test

might eventually outperform the GLRT. The fitted lines through the points corresponding

to the Strip statistic and the GLRT meet at approximately m = 220 ≈ 106, but it would be

very computationally intensive to do simulations for graphs of that size. More importantly,

these simulations suggest that the GLRT is only able to detect at µ � m−1/6, and therefore

does not achieve the optimal detection rate under the uniform prior on paths.

m 1,025 2,049 4,097 8,193
µ.95 0.46 0.40 0.36 0.33

Table 9.3: The value of µ giving detection rate about 95% using the GLRT when the unknown
path is sampled uniformly over all paths
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Figure 9.8: Comparison of the Bayes test, the Strip statistic test, and the GLRT under the
uniform prior

9.6.2 Minimax detection

We focus on the diagonal path p, where pi = i, 0 ≤ i ≤ m− 1, as we believe this path to be

most challenging for the GLRT to detect, and we compare the performance of the GLRT

with the Weighted Average Statistic test (WAS) defined in (9.4). Note that it is equivalent

to consider the prior that puts all its mass on this diagonal path.

Recall that, under H0, the WAS is N (0, λm), and N (µ, λm) under H1, independently of

the unknown path (with λm ∼ (logm)−1). Therefore, for a power of 95% at level 5%, we

need µ ≥ 2z.95

√
λm, where z.95 is the 95% standard normal quantile. Some power curves for

the WAS are graphed in Figure 9.10. We use simulations to do the same for the GLRT in

Figure 9.11, where each point on the curves is based on 1,000 realizations of the statistic.

While the power curves for the WAS clearly tend to translate to the left, this does not

seem to be the case for the GLRT. This might be an indication that the detection threshold

for the GLRT does not tend to zero as m increases, just as in the case of the binary tree.
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m 1,025 2,049 4,097 8,193 16,385 32,769
µ.95 1.20 1.15 1.10 1.06 1.03 0.99

Table 9.4: The value of µ giving detection rate about 95% using the WAS test

m 1,025 2,049 4,097 8,193
µ.95 0.90 0.89 0.885 0.88

Table 9.5: The value of µ giving detection rate about 95% using the GLRT for detecting the
diagonal path
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Figure 9.9: Comparison of the GLRT and the WAS when the abnormal path is the diagonal
path
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Figure 9.10: Detection rate curves for the WAS statistic for m =
1025, 2049, 4097, 8193, 16385, 32769. As m increases the curve moves to the left. Type I
error is set to 5%.

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ

D
et

ec
tio

n 
R

at
e

m=1025
m=2049
m=4097
m=8193

Figure 9.11: Detection rate curves for the GLRT for the diagonal path. The probability of
Type I error is set to 5%.
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Chapter 10

Concluding Remarks

In this last chapter of the thesis we will review our achievements and speculate about future

directions and refinements. We will also partly address a question regarding the BP test

which has arisen after our research on path detection in graphs; namely, whether we could

design simpler and better tests than the BP test for detecting chirps.

10.1 ChirpLab

A part of this thesis was the development of a software package called ChirpLab, which is

available at http://www.chirplab.org. It implements most of the algorithms proposed

herein and can be used to reproduce the results. The software package also accompanies the

ETD copy of this thesis (see http://www.ndltd.org/). This will serve as a more reliable

archive and, since we expect there to be future changes to ChirpLab, this ensures that the

original code which was used in this thesis will always be available and easily retrievable in

the future.

10.2 BP Test and the Graph Problem

Our study of the abstract graph problem shows that we can achieve (near) optimal perfor-

mance for path detection in graphs with very simple statistics. In the Bayesian problem

for the triangular lattice, the optimal statistic is a crude sum over nodes that can be con-

tained in a “strip.” For the minimax problem, a statistic that gives a good upper bound is

a simple weighted average over all the nodes in the graph. Besides that, the simulations for

the graphs indicate that the GLRT does not achieve the optimal rate for detectability. For

chirp detection, one might want to start searching for other alternatives than searching for
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the best chirplet path in the chirplet graph and perhaps look for simpler methods instead.

However, there are some important remarks to make:

1. The theoretical results give optimality conditions in an asymptotic sense. For the graph

sizes we considered in the numerical simulations, the GLRT was shown to perform

better than the simple optimal test for the Bayes problem.

2. The graph problem is an ideal abstraction of the situation in the chirplet graph. The

graph in our methodology has a much more complex topology and the costs at the

nodes are not independent.

3. The typical size of a chirplet graph is at most moderate. In our numerical experiments

we considered graphs where the length of paths never exceeded 16 chirplets.

4. We already have numerical evidence that there is not much room for improvement

if the goal is to have an adaptive method method for nonparametric chirp detection.

For example, in the case of detection of monochromatic and linear chirps, the price

we pay for being adaptive is not great when compared to methods which rely on the

prior knowledge of the chirp belonging to these small parametric classes. The methods

we have proposed are also fast and flexible and a software implementation is publicly

available.

10.3 Achievements

We have presented a flexible and practical methodology for estimating and detecting non-

homogeneous oscillatory signals. Although the procedures were developed with chirp signals

in mind, the methods could be generalized for other types of statistical problems where the

idea of chaining local correlations makes sense. The estimation procedure is provably near-

optimal over a wide range of chirps, and numerical experiments show that the method is

promising. The numerical simulations also indicate that the BP test is very sensitive over a

broad class of chirps and does not leave much room for improvement. We have extended the

BP test so that with long streams of data, it can be applied rapidly without sacrificing much

sensitivity. Therefore, our methods have the potential of being practical tools for solving

real-world problems involving chirps.
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In the search of developing theory for the detection of chirps we were lead to the study

of the abstract problem of searching for paths in graphs. In collaboration with others we

have pursued that problem and established theoretical results.

10.3.1 New methods for approximations with time-frequency atoms

Assume we are given a discrete collection of time-frequency atoms Ω as described in Sec-

tion 1.2 and we have a class of signals we want to represent, perhaps approximately, as

linear combinations of these atoms. A good representation could be one which gives the

best approximation of a signal f where the number of atoms to use is fixed. If the notion

of “neighboringness” between atoms, as for chirps and chirplets, makes sense for the class

of signals we are considering, we could possibly utilize the ideas and algorithms presented

here. We could consider an analogy to the chirplet graph, where each vertex v in the graph

represent an atom wv from Ω and the vertices are connected with edges according to some

prescribed rule. Assume the atoms are normalized so that ‖wv‖ = 1. Then, given a signal

f which we wish to analyze, we could propose solving

max
W∈W

∑
v∈W
|〈f, wv〉|2; (10.1)

whereW is a set of connected nodes andW is the collection of all allowable paths. Whether

we can solve the optimization problem rapidly depends on the topology of the graph, and we

might need to resort to other types of network flow algorithms than we used in our methods.

If we assume the topology is nice, the maximizer W ∗ of (10.1) would then give us a set of

atoms which we could project the original function onto, giving

f̃ =
∑
v∈W
〈fv, wv〉wv,

as a possible approximation to fv. Note that, since the atoms could have overlapping

support, solving (10.1) is not necessarily equivalent to solving

min
W

min
(αv)
‖f −

∑
v∈W

αvwv‖2.
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Nevertheless, the approximation we get by solving (10.1) could still be good. Thus, our

methodology provides an alternative to the best-basis algorithm [28], matching pursuit [58],

and basis pursuit [27] for finding approximations of signals using time-frequency atoms.

10.4 Future directions

The methods we have developed are aimed at detecting and estimating single chirps. That

is, signals of the form f(t) = A(t) cos(Nϕ(t)). One could imagine practical applications

where the unknown signal is a superposition of chirps with distinct amplitudes and phases,

i.e., f(t) =
∑

k Ak(t) cos(Nϕk(t)). Although the notion of a chirplet graph could still make

sense, it is not obvious how one should extend the current methods to deal with this situation.

Perhaps other methods based on new ideas have to be developed.

It would be interesting to explore the BP estimator further and eventually apply it to

practical problems. The same holds for the BP test where perhaps the most interesting

application would be gravitational wave detection. Especially since now we have a strategy

to process long streams of data where the support of the chirp is unknown.

We have seen that multiscale chirplets have good approximation properties for chirps

[20]. Since the dictionaries are of reasonable size and we have fast algorithms, it might be

worthwhile investigating whether these mathematical tools could be practical for processing

audio signals. For the sake of curiosity, we have tried applying the method of thresholding

in the best chirplet frame on segments of old audio recordings and managed good qualitative

results compared to other related methods that use cosine packets [16].

We would like to further study the theoretical performance of the BP test. So far we

have only provided an upper bound for detection and a good lower bound is missing. Based

on our studies for the abstract graph problem, we expect that the upper bound we provided

for the BP test is not sharp in a Bayesian setting when every chirp is equally likely to appear

in the data.

At last, we mention several open questions and extensions we could study for the problem

of path detection in graphs:

• Theoretical study of the GLRT in the triangular and square lattice. From simulations

we suspect that it does not achieve the optimal rate in the Bayesian and minimax

settings we consider.
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• Sharpening the results we already have for the Bayesian problem on the square lattice

and the minimax problem for the triangular lattice. Also it would be interesting to

study the minimax problem for the square lattice.

• Study variations of the problem. Such as when the unknown path could be of a length

shorter than the graph and at unknown location. Another variation would be to study

the problem of detecting more general sets, or regions, of connected nodes where the

mean is elevated. We could imagine studying graphs with other topologies.

• Investigation of problems where the variables associated with the nodes are correlated

or when the means along the unknown path are not all equal. Also, to get closer to

the situation in the monoscale BP test, study the problem when means decay away

from the path instead of being set to zero.

• Since our current results are asymptotic, we would also want to know what types of

tests exhibit good performance for moderate sample sizes. Note that, as seen from the

simulations, we can have asymptotically optimal tests (e.g., the test based on the strip

statitistic) that do not perform better than the GLRT for the range of graph sizes we

considered.
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Appendix A

Formula for Chirplet Cost in Case of
Real-Valued Signals

In Section 3.3.5 we claimed there is an analytic formula for calculating the chirplet cost

C(v) = max
ϕ0

∣∣∑
t∈I yt cos(ϕµ(t) + ϕ0)

∣∣2∑
t∈I cos2(ϕµ(t) + ϕ0)

, (A.1)

where the chirplet is indexed by v = (I, µ) and ϕµ(t) = aµt
2/2 + bµt. Consider ϕµ and I

fixed and write

f(ϕ0) =

∣∣∑
t∈I yt cos(ϕµ(t) + ϕ0)

∣∣2∑
t∈I cos2(ϕµ(t) + ϕ0)

.

Using the trigonometric identity cos(u+ v) = cos(u) cos(v)− sin(u) sin(v), we have

g(ϕ0) =
A2 cos2 ϕ0 − 2AB sinϕ0 cosϕ0 +B2 sin2 ϕ0

C2 cos2 ϕ0 − 2D sinϕ0 cosϕ0 + E2 sin2 ϕ0
,

where

A+ ıB =
∑
t∈I

yt e
ıϕµ(t),

and

C2 =
∑
t∈I

cos2 ϕµ(t), D =
∑
t∈I

cosϕµ(t) sinϕµ(t), E2 =
∑
t∈I

sin2 ϕµ(t).

Further manipulations of g(ϕ0), using the identities

cos(2u) = 2 cos2(u)− 1 = 1− 2 sin2(u), sin(2u) = 2 sin(u) cos(u),
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give us

g(ϕ0) =
a cos(2ϕ0) + b sin(2ϕ0) + c

d cos(2ϕ0) + e sin(2ϕ0) + f
,

where

a = A2 −B2, b = −2AB, c = A2 +B2,

and

d = C2 − E2, e = −2D, f = C2 + E2 = |I|.

The critical points of g need to satisfy g′(ϕ0) = 0. Differentiating with respect to ϕ0, we get

g′(ϕ0) = 2 · (af − cd) sin(2ϕ0) + (ce− bf) cos(2ϕ0) + (ae− bd)
(d cos(2ϕ0) + e sin(2ϕ0) + f)2

.

Let consider two cases: (i) (af − cd)2 + (ce− bf)2 = 0, and (ii) (af − cd)2 + (ce− bf)2 6= 0:

(i) Note that af = cd and ce = bf and since f = |I| > 0,

ae− bd =
1
f

(afe− bdf) =
1
f

(cde− cde) = 0.

Hence, in case (i), g′(ϕ0) = 0 for all ϕ0, and g(ϕ0) is constant. Since c = A2 +B2 > 0

(unless yt = 0 for all t ∈ I), we have

g(ϕ0) = g(0) =
a+ c

d+ f
· f
c
· c
f

=
af + cf

cd+ df
· c
f

=
cd+ cf

cd+ cf
· c
f

=
c

f

=
A2 +B2

C2 + E2
=
|
∑

t∈I yt e
ıϕµ(t)|2

|I|
.

(ii) We can write the numerator of g′(ϕ0) as

h(ϕ0) =
α

ρ
sin(2ϕ0) +

β

ρ
cos(2ϕ0) + γ, (A.2)

where we have factored out

ρ =
√

(af − cd)2 + (ce− bf)2,

and

α = (af − cd)/ρ, β = (ce− bf)/ρ, γ = (ae− bd)/ρ.
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The extrema of g occur where h(ϕ0) = 0. Writing x = cos(2ϕ0) we have sin2(2ϕ0) =

1− x2, and solving h(ϕ0) = 0 leads to finding the solution of the quadratic equality

α2(1− x2) = (ργ + βx)2.

Thus, we have simple analytic formulas for finding the values of cos(2ϕ0) and sin(2ϕ0)

at the extrema, which can then be used to find the maximum value of g.

If we do not have to check the value of g for all the solutions of the equality above, we could

go further in the analysis and, for example, look at signs of the derivative of g (i.e., the signs

of h in case (ii)). But we have already made our point: It is indeed possible to calculate

(A.1) using simple formulas involving A,B,C,D, and E. As we have already discussed,

C,D, and E do not depend upon the data and can therefore be calculated offline. Hence,

since A and B are given by the chirplet coefficient, the computational complexity of the

exact calculation of the chirplet costs for real-valued data is only a small constant factor

times the computational complexity of the chirplet transform.
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Appendix B

Imposing Continuity of the Phase for
Chirp Detection

Consider the data

yt = αst + zt, t = 0, 1, . . . , N − 1;

here, α is a real unknown scalar, st is an unknown signal of the form st = cos(φ(t)) where the

phase φ is smooth, and zt is noise which we take to be a vector of i.i.d. standard Gaussian

variables. Given yt, the goal is to decide between,

H0 : α = 0, i.e., the data is only noise,

and

H1 : α 6= 0, i.e., there is a chirping signal st in the data.

B.1 A Test Based on Imposing Continuity of the Phase

We start by dividing the time interval I := {0, 1, . . . , N − 1} into sub-intervals {Iv}. Let

{φv} be a collection of “phaselets,” where supp(φv) = Iv and φv is a quadratic polynomial

in t on its support. For simplicity, we restrict ourselves to collections W = {φv(t)} such

that φW (t) :=
∑

v φv(t) is a continuous function of t with a continuous first derivative and

φW (0) = 0. Consider now

f(t) = cos(φW (t) + φ0) =
∑
v

cos(φv(t) + φ0)1Iv(t),
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where φ0 is a real scalar. Suppose that the set of alternatives is of the form λf where λ ∈ R

– i.e., we have a set of chirping signals with constant amplitudes, and with phase functions

which are globally C1 and piecewise quadratic. The GLRT takes the form

min
W,λ,φ0

‖y − λf‖2 = min
W,φ0

[
‖y‖2 −

(
〈y, f〉
‖f‖

)2
]

or

max
W,φ0

(
〈y, f〉
‖f‖

)2

= max
W,φ0

(
∑

v〈y, fv〉)
2

‖f‖2
.

Note that the denominator ‖f‖2 depends on W and φ0. Therefore, in general, this test

statistic is not additive and cannot be computed rapidly using ideas from dynamic pro-

gramming. If we restrict ourselves to highly oscillatory signals, the norm of f becomes

essentially constant and approximately equal to N/2; that is, independent of the value of

the phase offset φ0 and of the path W (due to the Riemann-Lebesgue lemma). Hence, in

the high-frequency regime, the GLRT is approximately equivalent to

max
W,φ0

〈y, f〉 = max
W,φ0

∑
v

〈y, fv〉, (B.1)

where we put fv(t) := cos(φv(t) + φ0)1Iv(t). Technically, we need to maximize the absolute

value of the sum, but if the discretization includes fv and −fv for each v, one can just as

well work with the signed sum. Maximizing with respect to φ0 gives 1

max
W
|〈y, exp(iφW )〉| = max

W
|
∑
v

〈y, exp(iφv)1Iv〉|.

This optimization problem cannot be solved rapidly using dynamic programming since the

functional is not additive. Let us step back then and reconsider (B.1). For each fixed φ0,

the functional we need to maximize is additive. Therefore, by considering a discrete set of

initial phase offsets and solving a sequence of optimization problems for different values of

φ0, one could calculate this test statistic using dynamic programming. This would of course

not give the exact maximum but if the discretization of φ0 is sufficiently fine, this ought to

do the job. The key point here is that this test statistic is, in fact, very similar to the BP

1Here we have used 〈y, f〉 = Re
“
〈y, ei(φW +φ0)〉

”
= Re

`
e−iφ0〈y, eiφW 〉

´
≤ |〈y, eiφW 〉|. By writing

〈y, eiφW 〉 = ρeiν where ρ = |〈y, eiφW 〉| we see that the equality holds when φ0 = ν.
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statistic presented in the paper. The notion of a “chirplet graph” is still valid, and one can

use the same network flow algorithms, although the costs at the vertices have to be handled

differently.

B.2 Calculating the Statistic

When computing the BP statistic, evaluating the costs at each vertex of the graph and

running the optimization alogorithm to find the best paths are two perfectly decoupled

procedures. In (B.1), although there is a coupling owing to the continuity of the phase,

one can still use the same network flow algorithms. Here each node v in the chirplet graph

corresponds to a phase function φv(t) = 1
2av(t− t0)2 + bv(t− t0) + cv supported on a time

interval Iv. The parameters av and bv determine the slope and frequency offset of a chirplet

(the chirp rate is av) but now we have an extra parameter cv to worry about, which needs to

be adapted to guarantee the phase continuity. In addition to keeping track of the distance

labels in the network flow algorithms, we also keep track of the phase offset cv at each vertex.

As we will see, the parameter cv is automatically determined by the continuity requirement.

Suppose φ0 is fixed, and consider two chirplets corresponding to vertices v and v′, where

there is an arc going from v to v′. Assume that the distance label at v is optimal, meaning

that the best path up to v has been determined, and cv is known. Note that if v is a starting

node in a chirplet graph, its distance label is optimal and cv = φ0. The cost at the vertex v

is given by

〈y, cos(φv)〉 = Re
(
〈y, ei(av/2(t−t0)2+bv(t−t0)+cv)〉

)
= Re

(
e−icv〈y, ei(av/2(t−t0)2+bv(t−t0))〉

)
.

Now let Iv = [t0, t1] and Iv′ = [t1, t2] be the time supports for fv and fv′ with phase functions

φv(t) =
1
2
av(t− t0)2 + bv(t− t0) + cv

and

φv′ =
1
2
av′(t− t1)2 + bv′(t− t1) + cv′ .
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The continuity of the phase, φv(t1) = φv′(t1) imposes

cv′ =
1
2
av(t1 − t0)2 + bv(t1 − t0) + cv.

Updating the distance label of v′ using the cost for v tells us how to update the phase offset

at v′.

Remark. We need to calculate the chirplet costs C(v) = 〈y, ei(av(t−t0)2+bv(t−t0))〉 only

once. Updating the costs based on the phase offsets is just a linear combination of the real

and imaginary part of C(v).

B.3 Some Criticism

• Computational cost: Clearly, the computation of the test statistic is more expensive

than that of the BP statistic since one would need to discretize the initial phase offset

φ0. If the cardinality of the discrete set of values of φ0 is M , the computational

complexity of the statistic is M times greater. Unless the discretization is extremely

coarse, this ratio is substantial.

• Problems with colored noise: We have assumed a white noise and chirp signals with a

constant amplitude. Suppose now that the noise is colored, namely, z := (z0, z1, . . . , zN−1) ∼

N(0,Σ). Consider the same set of alternatives f as earlier. The GLRT gives

min
W,φ0

(y − λf)TΣ−1(y − λf) = min
W,φ0

‖ỹ − λf̃‖2

where ỹ = Σ−1/2y and f̃ = Σ−1/2f . Equivalently we could base our decision upon

max
W,φ0

(
〈ỹ, f̃〉
‖f̃‖

)2

= max
W,φ0

(yTΣ−1f)2

fTΣ−1f
= max

W,φ0

(∑
v〈Σ−1y, fv〉

)2
fTΣ−1f

This test statistic looks almost like what we had earlier, with y replaced by Σ−1y. The

problem is that the denominator, fTΣ−1f cannot, in general, be approximated by a

constant at high frequencies. The functional will not be additive, which prevents the

use of dynamic programming.

• Restriction to high frequencies: In order for the test statistic to be rapidly computable,
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we would need to restrict ourselves to highly oscillatory chirps so that ‖f‖ is essentially

constant and independent of the collection of phaselets. It is not clear what to do at

low frequencies.

• Imposing continuity of the phase does not seem to improve detection: Our numerical

simulations indicate that we do not gain much by imposing continuity of the phase as

explained in this section. The BP test gives almost the same statistical performance

while being computationally far less expensive, and being amenable to important ex-

tensions concerning colored noise and varying amplitude.

B.4 BP Test: Local Fit of Amplitude and Phase Offset

Now consider the case where we do not impose continuity on the phase and, instead, fit the

amplitude and phase offset locally. Two key observations follow:

(i) Locally, a smooth chirp has a simple structure which asserts that at sufficiently small

scale, a smooth chirp has an almost linear instantaneous frequency;

(ii) The time-frequency portrait of a smooth chirp peaks around a ridge determined by

the instantaneous frequency (a smooth curve in the time-frequency plane).

The chirp detection paper proposes a two-step strategy for detection:

1. Calculate local fit of “chirplets” with data.

2. Look for good global fit by chaining together chirplets in a meaningful way.

As a measure of local fit, we could use the GLRT principle while a meaningful global fit

could be based on chirplet paths in the chirplet graph. In the white noise model, we have

a nice interpretation based on the GLRT. Let W = {φv} be a collection of phase functions

such that φv(0) = 0. Consider

f(t) =
∑
v

λvfv(t),

where fv(t) := cos(φv(t) + φv,0)1Iv(t), and {λv} and {φv,0} are collections of real scalars.

Now apply the GLRT principle:

min
W,λv ,φv,0

‖y − f‖2 = min
W,λv ,φv,0

∑
v

‖y1Iv − λvfv‖2 = min
W,φv,0

‖y‖2 −
∑
v

(〈y, fv〉)2/‖fv‖2.
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At high frequency, the approximation ‖fv‖2 ≈ |Iv|/2 is tight, and the test is nearly equivalent

to

max
W,φv,0

∑
v

|〈y, fv〉|2/|Iv|.

Maximizing with respect to φv,0 gives us

max
W

∑
v

|〈y, |Iv|−1/2 exp(iφv)1Iv〉|2, (B.2)

which is identical to the BP statistic, assuming the white noise model.

Remark. For colored noise, this interpretation does not hold. The GLRT asks to solve

min
W,λv ,φv,0

(y − f)TΣ−1(y − f) = min
W,λv ,φv,0

‖Σ−1/2ỹ −
∑
v

λvf̃v‖2

where ỹ = Σ−1/2y and f̃v = Σ−1/2fv. Although the time supports of the fv’s are disjoint,

this does not necessarily hold for the f̃v’s, and one cannot take the sum outside the squared

norm. We are stuck with this untractable expression. Although this type of GLRT inter-

pretation does not motivate a candidate test statistic, one could still measure the local fit

by considering (yv − λvfv)TΣ−1(yv − λvfv), where yv = y1Iv . Doing so gives us the chirplet

costs for colored noise as introduced in the Chirp Detection paper.

B.5 Numerical Simulation

We generated data of the form

yk = αsk + zk, k = 0, 1, . . . , N − 1;

(sk) is a vector of equispaced time samples of a real-valued chirp and (zk) is a sequence of

i.i.d. N(0, 1). We define the Signal-to-Noise-Ratio (SNR) as

SNR =
‖αs‖√
N
.

The signal length is N = 1024 and the test signal is a cubic phase chirp with constant

amplitude, s(t) = cos(φ(t)):

φ(t) = 2πN(t3/12 + t/8).
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The signal was sampled at tk = k/N , k = 0, 1, . . . , N − 1. We computed the test statistic

(B.1) where the maximization is over a grid of phase offsets φ0 with 100 equally spaced

values from 0 to 2π. We call this Test 1. The second test we considered was based on the

BP statistic as in (B.2); we call it Test 2.

We use the same chirplet graph for both test statistics (same chirp rates and base fre-

quencies). For simplicity, we used a single scale of the form 2−s and set s = 2. Thus, the time

axis is divided into 4 equally long segments. We restricted ourselves to discrete frequencies bv

in the interval {100, . . . , 400}. The slope parameters are equal to av = 2π(−1/2 + k · 2s/N),

where k ∈ {0, . . . , N/2s} and the phase of the chirplet is φv(t) = avt
2/2 + bv. This dis-

cretization gives a very good correlation with the signal in the noiseless case (close to 0.95

in the case of Test 1). For each test statistic we repeated the following steps:

• Randomly sample 1,000 realizations of white noise which are used to select a detection

threshold giving a probability of false detection equal to 5%.

• For each SNR, sample the data model 1,000 times in order to compute detection rates.

Figure B.1 compares the detection rates for both methods. The performance is nearly

identical.

B.6 Conclusions

Our numerical simulations indicate that there is not much to gain in terms of statistical

sensitivity by forcing the continuity of the phase.
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Figure B.1: Comparison of the performance of Test 1 which is based on (B.1) and Test 2,
which is based on the BP statistic. The probability of Type I error is fixed at 5%.
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Appendix C

Proofs and Lemmas

C.1 Taylor Approximation for Functions in HÖLDER
s
(R)

The following lemma for Taylor approximations of functions in HÖLDERs(R) is useful.

Lemma 16. Assume f ∈ HÖLDERs(R) with s ∈ [2, 3] such that m < s ≤ m + 1 where m

is an integer. Fix an interval I ⊂ [0, 1] and pick a t0 ∈ I. Then

f(t) =
m−1∑
k=0

f (k)(t0)
k!

(t− t0)k + ε(t), ∀t ∈ I

where

|ε(t)| ≤ K · sup
t∈I
|t− t0|s ≤ K · |I|s,

and K = ‖f‖s
s for s = 2 and K = ‖f‖s

s(s−1) for s ∈ (2, 3]. Also, for s ∈ (2, 3],

f ′(t) = f ′(t0) + f ′′(t0)(t− t0) + γ(t), ∀t ∈ I

where

|γ(t)| ≤ K · sup
t∈I
|t− t0|s−1 ≤ K · |I|s−1,

and K = ‖f‖s
s−1 .

Proof. The proof of this lemma relies on standard arguments from calculus.

First consider s = 2. Then

|f ′(x)− f ′(y)| ≤ ‖f‖s · |x− y|s−1.
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Let hy(x) = f(x)− f(y)− f ′(y)(x− y) for some fixed y. Note that hy(y) = 0 and h′y(x) =

f ′(x)− f ′(y). Then the fundamental theorem of calculus gives

|hy(x)| = |hy(x)− hy(y)| =
∣∣∣∣∫ x

y
h′y(u)du

∣∣∣∣
≤ ‖f‖s ·

∣∣∣∣∫ x

y
|u− y|s−1du

∣∣∣∣ =
‖f‖s
s
· |x− y|s,

and the result follows.

Next assume s ∈ (2, 3]. Then

|f ′′(x)− f ′′(y)| ≤ ‖f‖s · |x− y|s−2

and analogously to the result above (think of f ′′ in the role of f ′), we get

|f ′(x)− f ′(y)− f ′′(y)(x− y)| ≤ ‖f‖s
s− 1

· |x− y|s−1. (C.1)

Let hy(x) = f(x) − f(y) − f ′(y)(x − y) − f ′′(y)/2 · (x − y)2 for some fixed y. Then since

hy(y) = 0 and h′y(x) = f ′(x)− f ′(y)− f ′′(y)(x− y), we get by the fundamental theorem of

calculus

|hy(x)| = |hy(x)− hy(y)| =
∣∣∣∣∫ x

y
h′y(u)du

∣∣∣∣
≤ ‖f‖s

s− 1
·
∣∣∣∣∫ x

y
|u− y|s−1du

∣∣∣∣ =
‖f‖s

s(s− 1)
· |x− y|s,

which finishes the proof.

C.2 Proof of Lemma 3

Consider the continuous broken line connecting the points (t0,I , bµ,I), where bµ,I is of form

as in (6.2). Choose the sequence of frequency offsets (bµ,I) = (bI) such that bI is as close to

ϕ′(t0,I) as possible. For the right endpoint of the last interval I, bI is as close to ϕ′(t1,I) as

possible. The discretization spacing for the frequency offsets gives

|bI − ϕ′(tI)| ≤ π∆b, (C.2)
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where tI = t0,I , unless I is the last interval, in which case tI = t1,I . Take two adjacent

intervals I and I ′ in P and let aI be the slope of the line segment on the interval I. It is of

the requested form in (6.2), since

aI =
bI′ − bI
|I|

= 2π
∆b
|I|
· l, for some l ∈ Z.

Now we only have to prove that the continuous broken line,
∑

I∈P(bI + aI(t − t0,I))1I(t),

satisfies the inequality (6.3).

Let

pI(t) = ϕ′(t0,I) +
ϕ′(t1,I)− ϕ′(t0,I)

|I|
(t− t0,I),

and write

h(t) = ϕ′(t)− pI(t).

Since h(t0,I) = h(t1,I) = 0, we have by Rolle’s theorem h′(τ) = 0 for some τ ∈ (t0,I , t1,I).

Then for s ∈ (2, 3],

|h′(t)| = |h′(t)− h′(τ)| = |ϕ′′(t)− ϕ′′(τ)| ≤ ‖ϕ‖s · |I|s−2.

By the fundamental theorem of calculus and the triangle inequality for integrals,

|h(t)| = |h(t)− h(t0,I)| =

∣∣∣∣∣
∫ t

t0,I

h′(t)dt

∣∣∣∣∣ ≤
∫ t

t0,I

|h′(t)|dt ≤ ‖ϕ‖s · |I|s−1.

For s = 2, we have a slightly stronger inequality by Lemma 17, or

|h(t)| ≤ ‖ϕ‖s
2
· |I|s−1.

These bounds and a repeated use of the triangle inequality give (6.3):

|ϕ′(t)− (bI + aI(t− t0,I))| ≤ |ϕ′(t)− pI(t)|+ |pI(t)− (bI + aI(t− t0,I))|

≤ ‖ϕ‖s · |I|s−1 + |ϕ′(t1,I)− bI′ | · |t− t0,I |/|I|

+ |ϕ′(t0,I)− bI | · |1− |t− t0,I |/|I||

≤ ‖ϕ‖s · |I|s−1 + 2π∆b.
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Using the bounds we have gives,

|aI | =
∣∣∣∣aI |I|+ bI − ϕ′(t1,I)

|I|
+
ϕ′(t1,I) + bI

|I|

∣∣∣∣ ≤ R · |I|s−2 + 3π∆b · |I|−1.

For s = 2 we can improve the constant in the bound slightly, since,

|aI | =
∣∣∣∣bI′ − bI|I|

∣∣∣∣ =
∣∣∣∣bI′ − ϕ′(t0,I)|I|

+
ϕ′(t1,I)− bI′

|I|
+
ϕ′(t0,I)− ϕ′(t1,I)

|I|

∣∣∣∣
≤ R+ 2π∆b · |I|−1.

If ∆b ≤ |I|s−1,

|ϕ′(t)− (bI + aI(t− t0,I))| ≤ (R+ 2π)|I|s−1,

and

|aI | ≤ (R+ 3π) · |I|s−2.

Consider the interval I = [t0, t1). Assume θ(t) = a/2 · (t− t0)2 + b · (t− t0) +ϕ(t0) such

that |ϕ′(t) − θ′(t)| ≤ C for a constant C = C(R, |I|), depending on R and |I|. Note that

ϕ(t0) = θ(t0). Let g(t) := ϕ(t)− θ(t). Then, from the fundamental theorem of calculus,

∫ t

t0

g′(u)du = g(t)− g(t0) = g(t), ∀t ∈ I,

and

|ϕ(t)− θ(t)| ≤
∣∣∣∣∫ t

t0

g′(u)du
∣∣∣∣ ≤ ∫ t

t0

|g′(u)|du ≤ sup
t∈I
|ϕ′(t)− θ′(t)||I|

≤ C · |I|,

which finishes the proof of the lemma. �

Lemma 17. Assume ϕ ∈ HÖLDERs(R) with s = 2. Consider the interval I = [t0, t1] with

|I| ≤ 1 and let

pI(t) = ϕ′(t0) +
ϕ′(t1)− ϕ′(t0)

|I|
(t− t0).

Then for any t ∈ I,

|ϕ′(t)− pI(t)| ≤
R

2
|I|.
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Proof. Write f(t) = ϕ′(t). Define the parallelogram δΩf as the boundary of the region

Ωf = {(y, t) : |y − f(t0)| ≤ R|t− t0| and |y − f(t1)| ≤ R|t− t1| t ∈ I}.

Write df = f(t1)− f(t0). Since ϕ ∈ HÖLDER2(R), ϕ′(t) = f(t) ∈ Ωf for all t ∈ I. The line

segment

pI(t) = f(t0) +
df

|I|
(t− t0), t ∈ I,

is the diagonal of the parallelogram joining the points p0 = (t0, f(t0)) and p1 = (t1, f(t1)).

The maximum distance from this line segment to δΩf is at one of the vertices of the par-

allelogram different from p0 or p1. After some algebra, one can show that this maximum

distance is equal to
|I|
2R

(
R2 − df2

|I|

)
,

Note that this is indeed a positive quantity since |df | ≤ R|I| by the HÖLDER requirement.

This quantity is maximized with respect to df when df = 0. Thus, the maximum possible

distance is
|I|
2R

R2 =
R

2
|I|.

C.3 Proof of Lemma 5

Proof. The proof uses the same notation as the proof of Lemma 3. Let t̄ = (t0,I + t1,I)/2.

Consider the piecewise constant function
∑

I∈P bI1I(t), such that bI is of form as in (6.10)

and bI is as close to ϕ′(t̄I) as possible. From the discretization step, and since ϕ ∈

HÖLDER2(R), we get for every t ∈ I,

|ϕ′(t)− bI | ≤ |ϕ′(t)− ϕ′(t̄)|+ π∆b ≤ R/2 · |I|+ π∆b.

Note that for t ∈ I, |t− t̄| ≤ |I|/2.

Let the interval I ′ be adjacent to I with t = t∗ at their juncture. Then (6.12) follows

trivially from our previous bound and the triangle inequality:

|bI − bI′ | ≤ |bI − ϕ′(t∗)|+ |ϕ′(t)− bI′ | ≤ R · |I|+ 2π∆b.
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The proof of (6.13) follows the same arguments as given in the proof of Lemma 3.

C.4 Proof of Lemma 6

Proof. Consider the piecewise constant function
∑

I∈P bI1I(t), such that bI is of form as in

(6.14). The only thing that differs from the proof of Lemma 5 is the “connectivity” bound.

Let the interval I ′ be adjacent to I with t = t∗ at their juncture, bI = 2π|I| · m1, and

bI′ = 2π|I| · (m2 + 1/2) with m1,m2 ∈ Z. Then

|bI − bI′ | ≤ |bI − ϕ′(t∗)|+ |ϕ′(t)− bI′ | ≤ (1 + 2π) · |I|,

and therefore,

|1/2 + (m1 −m2)| ≤ 1 + 1/(2π) < 1.5.

If m1−m2 ≥ 1 or m1−m2 ≤ −2, then |1/2+(m1−m2)| ≥ 1.5. Hence, the only possibilities

are m1 −m2 = 0 or m1 −m2 = −1.

C.5 Proof of Theorem 6

The proof given here is essentially the same as the proof in [20] but we add a couple of

elementary proofs of some technical lemmas. We chose to include the proof in the thesis

for completeness. First we consider the case of real-valued data and then give an argument

showing that the estimation problem for complex-valued data is almost equally as hard.

C.5.1 Real-valued data

Let ϕ be a smooth function obeying ‖ϕ‖s ≤ R and supp(ϕ) ⊂ [0, 1]. One concrete choice

would be to use iterative sinusoids. The family of iterative sinusoids, {βn, n = 0, 1, 2, ...}, is

defined by the induction:

β0(t) = sin(π/4(1 + t)) for t ∈ [−1, 1], βn+1(t) = βn(sin(π/2t)) for t ∈ [−1, 1], n > 0.

These functions have the nice property that for any n ≥ 0, βn has 2n−1 vanishing derivatives

at t = −1, 1. For s ∈ [2, 3] we could choose ϕ(t) = K ·β2(2t−1)·1[0,1](t), with an appropriate

constant K to satisfy the Hölder condition.
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Define for m ∈ Z+,

ϕk,m(t) = m−sϕ(m(t− tk)), tk = k/m, k = 0, 1, . . . ,m− 1.

For t ∈ [0, 1], construct the phase function

Φξ(t) =
m−1∑
k=0

ξkϕk,m(t), with ξk ∈ {0, 1}.

Let p = bsc. Since ϕ(p)
k,m(t) = mp−sϕ(p)(m(t− tk)) and p− s < 0,

|ϕ(p)
k,m(t)− ϕ(p)

k,m(t′)| ≤ mp−s ·R · |t− t′|s−p ≤ R · |t− t′|s−p, 0 ≤ t, t′ ≤ 1.

Therefore ‖ϕk,m‖s ≤ R and Φξ ∈ HÖLDERs(R). This allows us to define a collection of

chirps:

Hm = {f(t) : f(t) = sin(NΦξ(t)), t ∈ [0, 1]},

where Hm ⊂ CHIRP(s,N,R). For any t ∈ [0, 1], at most one term in Φξ(t) is non-zero since

the supports of the ϕk,m’s are disjoint. Therefore, if we define

ak,m(t) = sin(Nϕk,m(t)),

we can write f ∈ Hm as

f(t) =
m−1∑
k=0

ξkak,m(t).

Since the functions ak,m(t) have disjoint support, they are orthogonal.

Let ‖ak,m‖2`2 =
∑N−1

l=0 |ak,m(l/N)|2. Lemma 18 and Lemma 19 give size estimates for

the L2 and l2 norms of ak,m:

Lemma 18. Assume Nm−s < 1. Then,

‖ak,m‖2L2
≤ C1 ·N2m−2s−1,

for some fixed positive constant C1. If in addition Nm−s ≤
√

3/4 ·‖ϕ(t)‖L2/‖ϕ(t)2‖L2, then

‖ak,m‖2L2
≥ C2 ·N2m−2s−1
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for some fixed positive constant C2.

Proof. Recall that cos(x) ≥ 1− x2/2 for all x. Then

‖ak,m‖2L2
=

∫ 1

0
sin2(Nϕk,m(t))dt =

∫ tk+1

tk

sin2
(
Nm−sϕ(m(t− tk))

)
dt

= m−1

∫ 1

0

[
1
2
− 1

2
cos(2Nm−sϕ(t))

]
dt

≤ m−1

∫ 1

0

1
2
· (2Nm−sϕ(t))2

2
dt = C ·N2m−2s−1,

where C = ‖ϕ(t)‖2L2
.

For the other direction we use the inequality cos(x) ≤ 1− x2/2 + x4/24. Then

‖ak,m‖2L2
≥ m−1

2

∫ 1

0

[
1−

(
1− (2Nm−sϕ(t))2

2
+

(2Nm−sϕ(t))4

24

)]
dt

= N2m−2s−1

∫ 1

0

[
(ϕ(t))2 − 4(Nm−s)2(ϕ(t))4

3

]
dt

≥ CN2m−2s−1

where C is a positive constant provided that
∫ 1

0

[
(ϕ(t))2 − 4(Nm−s)2(ϕ(t))4

3

]
dt > 0. This

condition holds if Nm−s ≤
√

3/4 ·‖ϕ(t)‖L2/‖ϕ(t)2‖L2 . A sufficient condition is ‖ϕ(t)2‖L2 ≤√
3/4 · ‖ϕ(t)‖L2 .

Lemma 19. Assume Nm−s < 1 and m < N4/(2s+1). Then

‖ak,m‖2`2 ≤ D1 ·N3m−2s−1.

If in addition, Nm−s ≤
√

3/4 · ‖ϕ(t)‖L2/‖ϕ(t)2‖L2, then

‖ak,m‖2`2 ≥ D2 ·N3m−2s−1.

Proof. Note that ak,m(0) = ak,m(1) = 0 so 1
N ‖ak,m‖

2
`2

equals the discrete approximation of

‖ak,m‖2L2
by the trapezoidal rule. Therefore

|‖ak,m‖2L2
− 1
N
‖ak,m‖2`2 | ≤ C ·N

−2,

for some constant C. Sincem < N4/(2s+1) impliesN−2 < N2m−2s−1, the discretization error
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is negligible as compared to the upper and lower bounds of the L2 norm from Lemma 18.

Therefore the results follow.

Restricting ourselves to the set Hm of chirplets, the estimation problem becomes the

problem of determining which vertex of the hypercube generated the observed data. Let P

be the orthogonal projection onto the span of the ak,m’s. Then for any estimator f̂ :

‖P f̂ − f‖2 = ‖P f̂ − Pf‖2 ≤ ‖f̂ − f‖2.

Therefore, we can focus on estimators which are linear combinations of ak,m’s,

f̂L =
m−1∑
k=0

ξ̂kak,m.

Since the ak,m’s are orthogonal and all have the same L2 norm, we have

‖f̂L − f‖2L2
= ‖

∑
k

(ξ̂k − ξk)ak,m‖2L2
= ‖ξ̂ − ξ‖2`2 · ‖ak,m‖

2
L2
, (C.3)

so the problem reduces to that of estimating ξ. Let Y = f + z be the vector of data and

define T = (T1, . . . , Tm) by

Tk = 〈Y, ak,m〉/‖ak,m‖2`2 = 〈f, ak,m〉/‖ak,m‖2`2 + 〈z, ak,m〉/‖ak,m‖2`2 = ξk + z′k,

where z′k ∼ N(0, 1/‖ak,m‖2`2). Then T ∼ N(ξ, σ2
m · I), where

σ2
m = 1/‖ak,m‖2`2 .

To get a good lower bound, we choose m such that the noise level σm is roughly of the same

size as the coordinates. If we select

m(N) = A ·N3/(2s+1)

then Nm−s < 1 and m < N4/(2s+1) so all the conditions for Lemma 19 are satisfied (if

needed, we could always choose the constant A appropriately for the technical condition

Nm−s ≤
√

3/4 · ‖ϕ(t)‖L2/‖ϕ(t)2‖L2 to hold – another option would be to choose ϕ such
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that the condition is always true whenever Nm−s < 1). Then

σ2
m = 1/‖ak,m‖2`2 ≥ C ·N

−3m2s+1 = C1 ·N−3N (6s+3)/2s+1 = C2,

and

σ2
m = 1/‖ak,m‖2`2 ≤ C2,

for some fixed constants C1 and C2. Or in other words, with this choice of m, σ2
m ∼ 1.

To construct the lower bound, assume σ2
m ∼ 1 and consider the Bayesian estimation

problem of estimating ξ = [ξ1, . . . , ξm], ξk ∈ {0, 1}, from the observation T ∼ N(ξ, σ2
m)

for the prior π(ξ) where the ξk’s are i.i.d. with P (ξk = 1) = P (ξk = 0) = 1/2. Let

the constant B be the Bayes risk for the problem of estimating the coordinate ξk from

Tk ∼ N(ξk, σ2
m). Since we are not interested in the values of constants we do not need to

know the exact value of B but only that B = O(1). The Bayes estimate is ξ̂ = [ξ̂1, . . . , ξ̂m],

where ξ̂k = E(ξk|T ) = E(ξk|Tk), and the Bayes risk for estimating ξ is

E‖ξ̂ − ξ‖2 =
m−1∑
k=0

E(ξ̂k − ξk)2 = m ·B.

The lower bound for this Bayes risk is a lower bound for the minimax mean-squared error.

For our choice of m and using equation (C.3) this gives

inf
f̂

sup
f∈FN

E‖f − f̂‖2L2
≥ (m ·B) · ‖ak,m‖2L2

≥ C ·N−2(s−1)/(2s+1), (C.4)

for some constant C. Since g := f − f̂L is zero at t = 0, 1, the approximation error of the

trapezoidal rule gives us

MSE(f, f̂L) = 1/N‖g‖`2 ≥ ‖g‖L2 −A ·N−2,

for some positive constant A. The approximation error is negligible compared to the lower

bound in (C.4), since for s ∈ [2, 3], N−2(s−1)/(2s+1) > N−2. This gives us the desired lower

bound in (7.3) in the case of real-valued chirps:

R∗(FN ) ≥ C ·N−2(s−1)/(2s+1),
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for some positive constant C.

C.5.2 Complex-valued data

To construct a lower bound in the case of complex-valued data we will use the same phase

functions as before and consider the set of functions that are embedded in CHIRP(s,N,R):

Hm = {f(t) : f(t) = exp(iNΦξ(t)), t ∈ [0, 1]}.

Take some f ∈ Hm. Then for t ∈ [k/m, (k + 1)/m), Φξ(t) = ξkϕk,m(t) so f(t) =

exp(iNξkϕk,m(t)), and therefore f(t) = 1 if ξk = 0 and f(t) = exp(iNϕk,m(t)) if ξk = 1.

Thus we can write each element f ∈ Hm as

f(t) = 1 +
m−1∑
k=0

ξk [exp(iNϕk,m(t))− 1] 1[k/m,(k+1)/m)(t),= 1 +
m−1∑
k=0

ξkgk,m(t),

where

gk,m(t) = [exp(iNϕk,m(t))− 1] 1[k/m,(k+1)/m)(t) = bk,m(t) + iak,m(t),

and bk,m(t) = cos(Nϕk,m(t)) − 1, and as before, ak,m(t) = sin(Nϕk,m(t)). This shows that

Hm is a hypercube. Note that since the gk,m’s have disjoint supports, they are orthogonal.

Assume the data is Y = f + z = f + z1 + iz2, where z1 and z2 are i.i.d. random vectors

of i.i.d. N(0, 1/2) variables. The problem is to estimate f =
∑

k ξkbk,m + i
∑

k ξkak,m

from the data Y . As for the real-valued data, we can focus on estimators which are linear

combinations of gk,m’s: f̂L =
∑m−1

k=0 ξ̂kgk,m. A similar isometry as before holds in this case

as well:

‖f̂L − f‖2L2
= ‖ξ̂ − ξ‖2`2 · ‖gk,m‖

2
L2
, (C.5)

so the problem reduces to estimate ξ. The minimax mean-squared error is bounded by the

Bayes risk for the simpler problem of estimating ξ from the observation T = (T1, . . . , Tm)

where

Tk = 〈Y, ak,m〉/‖ak,m‖2`2 =
[
ρm · ξk + z′1,k

]
+ i
[
ξk + z′2,k

]
;

z′1,k and z′2,k are i.i.d. and distributed as N(0, σ2
m) with

σ2
m = 1/(2 · ‖ak,m‖2`2),
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and ρm = 〈bk,m, ak,m〉/‖ak,m‖2`2 . Take m = A ·N3/(2s+1) for a suitable positive constant A,

and consider the same prior as before, or π(ξ); the ξk’s are i.i.d. with P (ξk = 1) = P (ξk =

0) = 1/2. The Bayes estimate is ξ̂k = E(ξk|Tk) with E(ξ̂k − ξk)2 = B2. Similar to before,

the Bayes risk for estimating ξ is

E‖ξ̂ − ξ‖2 = m ·B2.

Note that by the Cauchy-Schwarz inequality and this choice of m,

|ρm| ≤
‖bk,m‖`2
‖ak,m‖`2

≤ C ·N−(4s−1)/(2s+1),

where the last inequality follows from Lemma 20 below.

Lemma 20. Assume m ≤ N6/(4s+1). Then

‖bk,m‖2`2 ≤ C ·N
5m−4s−1,

for some fixed positive constant C.

Proof. Recall that 1− cos(x) ≤ x2/2 for all x. Then

‖bk,m‖2L2
=

∫ 1

0
(1− cos(Nϕk,m(t))2dt ≤

∫ tk+1

tk

(
(Nm−sϕ(m(t− tk)))2

2

)2

dt

= N4m−4s−1

∫ 1

0

ϕ(t)4

4
dt = C ·N4m−4s−1,

where C = ‖ϕ(t)2‖2L2
/2. The bound for the `2 norm follows then from the accuracy of the

trapezoidal rule which is negligible compared to the bound for the L2 norm.

The bound on ρm tells us that for N big enough, the real part of Tk contains hardly any

information about the unknown ξk. ρm tends to zero as N → ∞ and therefore B2 → B as

N → ∞ so the Bayes risk of the real-valued and complex-valued problems are essentially

as difficult. We finish establishing the bound in the case of complex-valued data by noting

that,

‖gk,m‖2 = ‖bk,m‖2 + ‖ak,m‖2 ≥ ‖ak,m‖2,
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and therefore (C.5) and the lower bound of the Bayes risk give us

R∗(FN ) ≥ C ·N−2(s−1)/(2s+1),

for some positive constant C. �

C.6 Proof of Theorem 7

Proof. We follow Donoho’s and Johnstone’s arguments in their paper on thresholding in the

best orthobasis [34] almost exactly. See also Candès’ survey paper [21] and Donoho’s paper

on the connection between the CART and Best-Ortho-Basis methodologies [31].

The empirical complexity for the estimator can be written as

K(f̂ , y) = ‖f̂ − y‖2 + Λ(f̂) = ‖f − f̂ + z‖2 + Λ(f̂)

= ‖f − f̂‖2 + Λ(f̂) + ‖z‖2 + 2Re(〈f − f̂ , z〉)

= K̂ + ‖z‖2 + 2Re(〈f − f̂ , z〉),

and similarly,

K(f0, y) = K0 + ‖z‖2 + 2Re(〈f − f0, z〉).

Since by the definition of f̂ , K(f̂ , y) ≤ K(f0, y), we have

K̂ ≤ K0 + 2Re(〈f − f0, z〉)− 2Re(〈f − f̂ , z〉)

= K0 + 2Re(〈f̂ − f0, z〉).

This provides the following bound on the square error of the estimator:

‖f − f̂‖2 ≤ K̂ ≤ K0 + 2Re(〈f̂ − f0, z〉).

Define

∆(k) = sup
f1,f2∈C

{Re(〈f1 − f2, z〉 : ‖fj − f‖2 ≤ k,Λ(fj) ≤ k, j = 1, 2}.



215
Note that, by the definition of f0, we have K0 ≤ K̂. Then

‖f0 − f‖2 ≤ K0 ≤ K̂, Λ(f0) ≤ K0 ≤ K̂,

and obviously

‖f̂ − f‖2 ≤ K̂, Λ(K̂) ≤ K̂.

Therefore, f̂ and f0 are feasible solutions for the optimization problem for ∆(K̂), which

gives

K̂ ≤ K0 + 2∆(K̂) ≤ K̂ + 2∆(K̂).

The strategy is to show that 2∆(K̂) is small compared to K̂ and therefore K̂ and K0 are of

similar size.

Define kj = 2j(1 − 8/η)−1 max(K0, λ
2) for j ≥ 0 and remember that η > 8. Define the

event

Ej :=
{

∆(k) ≤ 4k
η
,∀k ≥ kj

}
.

Assume Ej holds. Then necessarily the event

Bj := {K̂ ≤ kj}

holds. Otherwise, if K̂ > kj we have ∆(K̂) ≤ 4K̂/η by the definition of Ej . This would give

K̂ ≤ K0 + 2∆(K̂) ≤ K0 +
8
η
K̂,

and K̂ ≤ (1− 8/η)−1K0 ≤ kj , which is a contradiction.

Since Bc
j ⊂ Ecj , we have

EK̂ ≤ k0P (K̂ ≤ k0) +
∞∑
j=0

kj+1P (kj ≤ K̂ < kj+1) ≤ k0 +
∞∑
j=0

kj+1P (kj ≤ K̂)

≤ k0 +
∞∑
j=0

kj+1P (Ecj ).



216
Next we use the bound from Lemma 21 to get

EK̂ ≤ k0 +
∞∑
j=0

k0 · 2j+1 · 1
(2j)!

≤ k0 + 2k0 ·
∞∑
j=0

2j

j!
= k0 + 2(1− 8/η)−1 ·max(K0, λ

2) · e

≤ 6.5(1− 8/η)−1 ·
(
K0 + λ2

)
.

The following lemma is based on [34] and can also be found in [31]. The proof hardly

needs to be changed for our situation of chirp estimation using chirplet paths:

Lemma 21.

P (Ecj ) ≤ 1/(2j)!.

Proof. LetM stand for our chirplet dictionary with the number of chirplets equal to MN =

|M|. Fix j ≥ 0 and take some k ≥ kj . Then k ∈ [lλ2, (l + 1)λ2) for some l ∈ Z+. Let f1

and f2 be feasible signals for the optimization problem ∆(k). Each of these signals has at

most l = bk/λ2c terms since Λ(fn) ≤ k, n = 1, 2, and therefore the difference f1 − f2 is a

linear combination of at most 2l distinct terms fromM.

Let V be the linear space of dimension at most 2l spanned by those terms and let PV

be the orthogonal projection onto V . Using the triangular inequality and that f1 and f2

are feasible for ∆(k), we get ‖f1 − f2‖ ≤ ‖f1 − f‖+ ‖f − f2‖ ≤ 2
√
k. The Cauchy-Schwarz

inequality gives

|Re(〈f1 − f2, z〉)| ≤ |〈f1 − f2, z〉| ≤ ‖f1 − f2‖ · ‖PV z‖2 ≤ 2
√
k‖PV z‖2.

Consider the event

Al = {‖PV z‖2 ≤
√

2l ·
√

2(1 +
√

2 logMN ), for all V ∈M}

where C(2l,MN ) is the collection of all subspaces spanned by 2l members out of MN from



217
M. On the event Al we have,

|Re(〈f1 − f2, z〉)| ≤ 2
√
k ·
√

2l ·
√

2(1 +
√

2 logMN )

≤ 4 · k
λ

(1 +
√

2 logMN ) = 4 · k
η
,

since l ≤ k/λ2 and from the definition of λ. Thus, on the event Fj := ∩l≥2jAl, ∆(k) ≤ 4 · kη
for all k ∈ ∪l≥2j [lλ2, (l + 1)λ2) = [2jλ2,∞). Since kj ≥ 2jλ2, ∆(k) ≤ 4 · kη for all k ≥ kj on

the event Fj . Therefore Fj ⊂ Ej , and we finish the proof by the help of Lemma 22 below,

P (Ecj ) ≤ P (F cj ) ≤
∑
l≥2j

P (Acl ) ≤
∑
l≥2j

2M−1
N /(2l)!

≤ 2/MN

∑
l≥2j

1/l! ≤ 1/(2j)!,

where we used the facts, MN > 6 and
∑∞

l=n+1 1/l! < 3/(n+ 1)!, which can be derived from

the remainder of the Taylor series for ex (see, for example, [7]).

The following bound is from Donoho and Johnstone [34] who gave it for real-valued vec-

tors. For completeness we include their proof which basically holds unchanged for complex-

valued white noise:

Lemma 22. Let M vectors in CN be given, and let C(D,M) denote the collection of all

subsets consisting of D out of those M vectors. Let z = (zk) be a random vector with i.i.d.

entries such that zk = (z1
k + iz2

k)/
√

2 where z1
k and z2

k are i.i.d. N(0, 1). Then for β > 0

P

(
sup

V ∈C(D,M)
‖PV z‖2 >

√
D(1 +

√
2(1 + β) log(M))

)
≤ 2M−β/D!.

The result also holds if the vectors are in RN and the random vector z = (zk) is real with

i.i.d. standard Gaussian entries.

Proof. The argument is based on Borell’s inequality (see [56]). Take V ∈ C(D,M). Then

the dimensionality of V is at most D. This gives, E‖PV z‖22 = dim(V ) ≤ D. Next, note

that ‖PV z‖2 is a Lipschitz functional on a Gaussian field with Lipschitz constant 1. Namely,

since for any two vectors u and w in CN ,

|‖PV u‖2 − ‖PV w‖2| ≤ ‖PV u− PV w‖2 = ‖PV (u− w)‖ ≤ ‖u− w‖,
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where we have used the triangle inequality and the fact that PV is a projector. Then for

every V , we have (according to Lemma 28) that

P
(
‖PV z‖2 >

√
D + t

)
≤ P

(
‖PV z‖2 >

√
E‖PV z‖22 + t

)
≤ 2e−t

2/2, t > 0.

Setting t =
√
D ·

√
2(1 + β) log(M), bounding

 M

D

 by MD/D!, and using a union

bound gives the inequality:

P

(
sup

V ∈C(D,M)
‖PV z‖2 >

√
D(1 +

√
2(1 + β) log(M))

)
≤

 M

D

 2M−D(1+β) ≤ 2M−β/D!.

C.7 Proof of Theorem 9

Proof. The proof is based on similar arguments as in Appendix C.6. The residual sum of

squares can be written as

‖y − f̂‖2 = ‖f − f̂‖2 + ‖z‖2 + 2Re(〈f − f̂ , z〉),

and similarly,

‖y − f0‖2 = ‖f − f0‖2 + ‖z‖2 + 2Re(〈f − f0, z〉).

By the definition of f̂ , ‖y − f̂‖2 ≤ ‖y − f0‖2, and therefore

‖f − f̂‖2 ≤ ‖f − f0‖2 + 2Re(〈f̂ − f0, z〉).

Define

∆(k) = sup
f1,f2∈C

{Re(〈f1 − f2, z〉 : ‖fj − f‖2 ≤ k, j = 1, 2},

and write K̂ := ‖f − f̂‖2, K0 := ‖f − f0‖2. Note that, by the definition of f0, we have

K0 ≤ K̂ and therefore, f̂ and f0 are feasible solutions for the optimization problem for
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∆(K̂). This gives

K̂ ≤ K0 + 2∆(K̂) ≤ K̂ + 2∆(K̂).

As in the previous proof, we want to show that 2∆(K̂) is small compared to K̂.

Due to our choice of chirplet graph, there exists a constant C(R) > 1 such that

K0 ≤ C(R)L.

Recall that the number of chirplet paths in the graph is less than AeγL, for some constant

A > 0. Let

ξ2 =
3
2
γ + log(A) + log(2)/2,

and

λ2 = η2(
√

max(C(R), ξ2) + 1)2,

where η > 8. Note that λ2L ≥ K0. Define

kj = (j + 1)(1− 8/η)−1λ2L, j ≥ 0,

and the event

Ej :=
{

∆(k) ≤ 4k
η
,∀k ≥ kj

}
.

As in the proof in Appendix C.6, the event Ej is a subset of

Bj := {K̂ ≤ kj}.

Then, since Bc
j ⊂ Ecj , we have

EK̂ ≤ k0P (K̂ ≤ k0) +
∞∑
j=0

kj+1P (kj ≤ K̂ < kj+1) ≤ k0 +
∞∑
j=0

kj+1P (kj ≤ K̂)

≤ k0 +
∞∑
j=0

kj+1P (Ecj ).
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Next we use the bound from Lemma 21 to get

EK̂ ≤ k0 +
∞∑
j=0

k0 · (j + 1) · exp(−(j + 1)γL)
1− exp(−γL)

= k0 +
k0

1− exp(−γL)

∞∑
j=0

j · exp(−jγL)

=
(

1 +
exp(−γL)

(1− exp(−γL))3

)
· k0

=
(

1 +
exp(−γL)

(1− exp(−γL))3

)
(1− 8/η)−1λ2L,

since
∑

j≥0 ja
j = a/(1− a)2, for 0 ≤ a < 1.

The following lemma gives a bound on the probability of the event Ecj :

Lemma 23.

P (Ecj ) ≤
exp(−(j + 1)γL)

1− exp(−γL)
.

Proof. Fix j ≥ 0 and take some k ≥ kj . Then k ∈ [lλ2L, (l + 1)λ2L) for some l ∈ Z+. Let

f1 and f2 be feasible signals for the optimization problem ∆(k). Each of these signals is a

sum of L chirplets. Therefore the difference f1 − f2 is a linear combination of at most 2L

chirplets. Let V be the linear space of dimension at most 2L spanned by those chirplets and

let PV be the orthogonal projection onto V . LetM be the collection of all possible spaces

of this form. Then, as the number of chirplet paths in the graph is less than AeγL, we have

|M| ≤ A2e2γL.

Following the same arguments as in the proof of Lemma 21, we have

|Re(〈f1 − f2, z〉)| ≤ |〈f1 − f2, z〉| ≤ ‖f1 − f2‖ · ‖PV z‖2 ≤ 2
√
k‖PV z‖2.

On the event

Al = {‖PV z‖2 ≤
√

2l · λ/η ·
√

2L, for all V ∈M},
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we have,

|Re(〈f1 − f2, z〉)| ≤ 2
√
k ·
√

2l · λ/η ·
√

2L

≤ 4 · k

λ
√
L
· λ/η ·

√
L = 4 · k

η
,

since l ≤ k/(λ2L). Thus, on the event

Fj := ∩l≥(j+1)Al,

∆(k) ≤ 4 · kη for all k ∈ ∪l≥(j+1)[lλ2L, (l+ 1)λ2L) = [(j+ 1)λ2L,∞). Since kj ≥ (j+ 1)λ2L,

∆(k) ≤ 4 · k
η
, ∀k ≥ kj ,

on the event Fj . Therefore Fj ⊂ Ej , and we finish the proof by the help of Lemma 22 below,

P (Ecj ) ≤ P (F cj ) ≤
∑
l≥j+1

P (Acl ) ≤
∑
l≥j+1

exp(−lγL)

=
exp(−(j + 1)γL)

1− exp(−γL)
,

using the formula for the geometric series which holds since exp(−γL) < 1. This finishes

the proof.

Lemma 24.

P (Acl ) ≤ exp(−lγL).

Proof. We have the concentration inequality

P
(
‖PV z‖2 >

√
2L+ t

)
≤ 2e−t

2/2,

for all t > 0 (see the proof of Lemma 22). Set t =
√

2l ·max(C(R), ξ2) ·
√

2L and note that

√
2lλ/η

√
2L =

√
2l ·max(C(R), ξ2)

√
2L+

√
2l ·
√

2L

≥
√

2l ·max(C(R), ξ2)
√

2L+
√

2L.
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Since l ≥ 1 and L ≥ 1,

2l ·max(C(R), ξ2) · L ≥ 2l · ξ2 · L = 2l · 3
2
γL+ 2l log(A)L+ l log(2)L

≥ 2γL+ lγL+ 2 log(A) + log(2).

Then from the concentration inequality and a union bound, we get

P (Acl ) ≤ P

(
sup
V ∈M

‖PV z‖2 >
√

2L+
√

2l ·max(C(R), ξ2)
√

2L
)

≤ 2A2 exp(2γL) exp(−2l ·max(C(R), ξ2) · L)

≤ 2A2 exp(2γL) exp(−2γL− lγL− 2 log(A)− log(2))

= exp(−lγL).

C.8 Proof of Lemma 10

We use similar arguments as in Chapter 6. Recall that cos(x) ≥ 1 − x2/2 for all x ∈ R.

Assume I = [t0, t1]. From the fundamental theorem of calculus we get

|ϕ(t)− bt− ϕ(t0)| ≤ ∆ω|I|.

Then

|〈f, c〉| = |〈fe−iNϕ(t0), c〉| ≥ Re(〈eiN(ϕ(t)−bt−ϕ(t0)), 1I〉)

= 〈cos(N(ϕ(t)− bt− ϕ(t0))), 1I〉

≥
(
1− (N∆ω|I|)2/2

)
· ‖I‖,

since (N∆ω|I|)2/2 ≤ 1. �
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C.9 Proof of Lemma 11

The bound can be established using integration by parts. First we have

〈f, c〉 =
∫
I
eiN(ϕ(t)−bt)dt =

∫
I
N(ϕ′(t)− b)eiN(ϕ(t)−bt) 1

N(ϕ′(t)− b)
dt

=
eiN(ϕ(t1)−bt1)

N(ϕ′(t1)− b)
− eiN(ϕ(t1)−bt0)

N(ϕ′(t0)− b)
+
∫
I
eiN(ϕ(t)−bt) ϕ′′(t)

N(ϕ′(t)− b)2
dt.

Then the triangular inequality gives

|〈f, c〉| ≤ 1
N |ϕ′(t1)− b|

+
1

N |ϕ′(t0)− b)|
+
∫
I

|ϕ′′(t)|
N |ϕ′(t)− b|2

dt

≤ 2
N∆ω

+
(

sup
t∈I
|ϕ′′(t)|

)∫
I

1
N(∆ω)2

dt

=
2

N∆ω
+
(

sup
t∈I
|ϕ′′(t)|

)
|I|

N(∆ω)2
.

The result follows since supt∈I |ϕ′′(t)| ≤ R. �

C.10 Proofs of Lemma 13 and Lemma 14

We start by analyzing (P +λQP )n(1+λq). The goal is to find out what is the slowest rate

that λ can go to zero such that the mean of the entries of

(P + λQP )n(1 + λq) = (P + λQP )n1 + λ(P + λQP )nq

goes to 1 as n → ∞. The sum over the entries of (P + λQP )n1 is equal to the sum of the

entries of the matrix (P + λQP )n, while the sum of the entries of (P + λQP )nq is the sum

of the first column of that same matrix. Thus, it is sufficient to consider the first term in

the above.

Note that P is a stochastic matrix, since all of its rows sum to 1, which gives us the

second of the following two indentities:

Q1 = q, P k1 = 1, k ≥ 0.

To bound the mean, we look at the binomial expansion of (P +λQP )n and investigate each

term when multiplying it by the unit vector 1 from the right. The terms are as follows:



224
• Pn1 = 1, whose sum is n.

• P · · ·PQP · · ·P1 = P · · ·P︸ ︷︷ ︸
l

Q1 = P lq = first column of P l. Since P is doubly

stochastic, so is P l and all of its columns sum to 1. There are n such terms, all

with factor λ in front, so averaging them gives us λ.

• P · · ·PQP · · ·P QP · · ·P1︸ ︷︷ ︸
=q

= P · · ·PQP · · ·P︸ ︷︷ ︸
l

q = P · · ·P︸ ︷︷ ︸
k

(p(l)
11q) = p

(l)
11P

kq, where

p
(l)
11 is the upper left-most entry in P l. The entries in P kq, the first column of P k,

sum to 1, so each term of this form sums to p(l)
11 . The number these kind of terms is n

2

 = n(n−1)
2 .

• In general, when λQP appears exactly k > 1 times in a term, its resulting sum is equal

to

λkp
(l1)
11 p

(l2)
11 · · · p

(lk−1)
11 ,

where p(lm)
11 is the upper left-most entry in a matrix of the form P lm . There are

 n

k


terms of this form.

The following bounds for pl11 show that p(l)
11 is roughly equal to 1/

√
l:

Lemma 25. For all integers l ≥ 1,

C1
1√
l
≤ p(l)

11 ≤ C2
1√
l
,

where C1 and C2 are constants which can be taken to be C1 = 2−3/2 and C2 = 2.

We postpone the proof of this lemma until Appendix C.10.3.

C.10.1 Proof of Lemma 13

Proof. In view of the necessary condition of the rate that we have achieved, this sufficient

condition is pretty tight, since it differs only by a log-factor. To prove this lemma we

investigate the terms in (P + λQP )n1. A term where QP appears exactly k > 1 times is of
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the form

P l1(QP )P l2(QP ) · · · (QP )P lk(QP )Pn−l1−l2−···−k1 = P l1QP l2+1 · · ·QP lk+1Q1

= P l1QP l2+1 · · · p(lk+1)
11 q

= p
(l2+1)
11 p

(l3+1)
11 · · · p(lk+1)

11 P l1q

where

l1 = 0, . . . , n− k

l2 = 0, . . . , n− k − l1
...

lk = 0, . . . , n− k − l1 − · · · − lk−1.

Summing over the entries in this vector gives

p
(l2+1)
11 p

(l3+1)
11 · · · p(lk+1)

11 ,

and if we collect all the terms of where QP appears exactly k times we get

Bk,n :=
n−k∑
l1=0

n−k−l1∑
l2=0

p
(l2+1)
11

n−k−l1−l2∑
l3=0

p
(l3+1)
11 · · ·

n−k−l1−l2−···−lk−1∑
lk=0

p
(lk+1)
11 .

By letting the index of all the sums range from 0 to n and using Lemma 25 we get the

following upper bound:

Bk,n ≤
n∑

l1=0

n∑
l2=0

p
(l2+1)
11

n∑
l3=0

p
(l3+1)
11 · · ·

n∑
lk=0

p
(lk+1)
11

≤
n∑

l1=0

n∑
l2=0

C√
l2 + 1

n∑
l3=0

C√
l3 + 1

· · ·
n∑

lk=0

C√
lk + 1

≤ nCk−1(n1/2)k−1 = Ck−1n
k+1
2

where C is a positive constant.
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Then

Ave ((P + λQP )n1) ≤ 1
n

(
n+

n∑
k=1

λkCk−1n
k+1
2

)

=
1
n

(
n+
√
n/C

n∑
k=1

(Cλ
√
n)k
)

= 1 +
1
C

1√
n

n∑
k=1

(Cλ
√
n)k.

If Cλ
√
n ≤ a < 1 where a is some constant, we get that

n∑
k=1

(Cλ
√
n)k ≤

∞∑
k=0

ak =
1

1− a

and

1 ≤ Ave ((P + λQP )n1) ≤ 1 +
1
C

1√
n

1
1− a

→ 1 as n→∞.

C.10.2 Proof of Lemma 14

Proof. Lemma 25 gives us the following lower bound on the sum of the entries of (P +

λQP )n1:

Ave ((P + λQP )n1) ≥ 1
n

n+
n∑
k=1

 n

k

λk
(

2−3/2 1√
n

)k−1


= 1 + 23/2 1√
n

n∑
k=1

 n

k

( λ′√
n

)k
= 1− 23/2 1√

n
+ 23/2 1√

n

(
1 +

λ′√
n

)n
where λ′ = 2−3/2λ. If the last term goes to ∞ as n→∞, then the average goes to ∞. This

gives us a necessary condition for the rate of λ.

1√
n

(
1 +

λ′√
n

)n
=

1√
n

exp
(
n log

(
1 +

λ′√
n

))
∼ 1√

n
exp

(√
nλ′
)

as n→∞.
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This gives us the necessary condition

λ′ = λ′n <
1
2

log(n)√
n

as n→∞,

since if λ′ = λ′n ≥ 1
2

log(n)√
n

, we have that limn→∞
1√
n

exp (
√
nλ′) ≥ 1 so

lim
n→∞

Ave
(

(P + λQP )n(1 + λq)
)
≥ lim

n→∞
Ave

(
(P + λQP )n1

)
≥ 1 + 23/2 > 1.

C.10.3 Proof of Lemma 25

C.10.3.1 Lower bound for p(l)
11

Notice that p(l)
11 is simply the probability of being in state 1 after l steps, given that one

started in state 1. By considering a random walk on a circle with n states, l ≤ n, we can

write down this probability explicitly. Ending up at the same place as one started in l steps

amounts to taking k steps clockwise, k steps counterclockwise and l − 2k steps without

moving. These movements happen with probability 1/4,1/4 and 1/2 respectively and we

notice that with the restriction l ≤ n one cannot go all around the circle. We will consider

the cases l even and odd seperately:

1. l even, l = 2m: In this case we have

p
(2m)
11 =

m∑
k=0

(2m)!
k!k!(2m− 2k)!

(
1
4

)k (1
4

)k (1
2

)2m−2k

.

If we write

ck := 2−2k (2k)!
(k!)2

we have

p
(2m)
11 =

m∑
k=0

2−2k (2k)!
k!k!

(2m)!
(2k)!(2n− 2k)!

(
1
2

)2k (1
2

)2m−2k

=
m∑
k=0

ck

 2m

2k

(1
2

)2k (1
2

)2m−2k

.
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The sequence (ck) is decreasing, since

ck+1

ck
=

(2k + 2)(2k + 1)
(k + 1)2

1
22

=
2k + 1
k + 1

1
2

=
k + 1/2
k + 1

< 1.

Therefore

p
(2m)
11 ≥ cm

m∑
k=0

 2m

2k

(1
2

)2m

.

Using Stirling’s approximation for the factorials, we get that

cm ∼
1√
πm

as m→∞. In fact we can prove by induction that

cm ≥
1

2
√
m
.

This holds for m = 1 since c1 = 1/2. Assume this is true for cm. Now (2m + 1)2 =

4m2 + 4n+ 1 > 4m(m+ 1) and therefore

(2m+ 1)2

(m+ 1)2

1
4

1
m
>

1
m+ 1

which gives us that

cm+1 =
2m+ 1
m+ 1

1
2
cm ≥

2m+ 1
m+ 1

1
2

1/2√
m
>

1
2
√
m+ 1

.

Now all that is left is to handle the term,

m∑
k=0

 2m

2k

(1
2

)2m

which is identically equal to 1/2. This follows from the well-known identity

 n

k

 =

 n− 1

k − 1

+

 n− 1

k

 , for all 1 ≤ k ≤ n− 1
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and the binomial formula:

m∑
k=0

 2m

2k

(1
2

)2m

= 2−2m

m−1∑
k=1

 2m− 1

2k − 1

+
m−1∑
k=1

 2m− 1

2k

+ 2


= 2−2m

2m−1∑
k=0

 2m− 1

k

 = 2−1.

Thus we have that

p
(2n)
11 ≥ 2−3/2 1√

2n
.

2. l odd, l = 2m+ 1: This case can be tackled in a similar way as before. Here we have

p
(2m+1)
11 =

m∑
k=0

ck

 2m+ 1

2k

(1
2

)2m+1

≥ cm

m∑
k=0

 2m+ 1

2k

(1
2

)2m+1

= cm ·
1
2

≥ 1
4
√
m

since

m∑
k=0

 2m+ 1

2k

(1
2

)2m+1

= 2−2m−1
m∑
k=0

1
2

 2m+ 1

2k

+

 2m+ 1

2m+ 1− 2k


= 2−2m−2

 m∑
k=0

 2m+ 1

2k

+
m∑
k=0

 2m+ 1

2m+ 1− 2k


= 2−2m−2

 m∑
k=0

 2m+ 1

2k

+
m∑
k=0

 2m+ 1

2k + 1


= 2−2m−2 22m+1 = 2−1.

Since 23(2m+ 1) > 16m, we have

p
(2m+1)
11 ≥ 1

4
√
m
> 2−3/2 1√

2m+ 1
.



230
Hence, in general,

p
(l)
11 ≥ 2−3/2 1√

l
,

which proves the first inequality in Lemma 25.

C.10.3.2 Upper bound for p(l)
11

We first consider l = 2m and write

p
(2m)
11 =

m∑
k=0

ak, where ak =
2−2k

(k!)2(2m− 2k)!
· 2−2m(2m)!.

Note that

an+l

an−l−1
=

1
24l+2

∏2l+2
k=−2l+1(2m+ k − 2n)∏l

k=−l(n+ k)2

=
∏l
k=−l(2m+ 2k + 1− 2n)(2m+ 2k + 2− 2n)∏l

k=−l(2n+ 2k)2
.

If m is even, we get

am/2+l

am/2−l−1
=

l∏
k=−l

(m+ 2k + 1)
(m+ 2k)

· (m+ 2k + 2)
(m+ 2k)

> 1,

and therefore am/2+l > am/2−l−1, l = 0, . . . ,m/2− 1. This gives

p
(2m)
11 =

m/2−1∑
k=0

ak +
m∑

k=m/2

ak

≤
m/2−1∑
k=0

am/2+k +
m∑

k=m/2

ak

= 2
m−1∑
k=m/2

ak + am ≤ 2
m∑

k=m/2

ak.
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Since ak = ck

 2m

2k

(1
2

)2m and ck is decreasing, we get

p
(2m)
11 ≤ 2cm/2

m∑
k=m/2

 2m

2k

(1
2

)2m

≤ 2cm/21/2 = cm/2 ≤
1√

m/2 + 1

≤ 2√
2m

by using Lemma 26 below. If m is odd, we get in a similar way that

p
(2m)
11 ≤ c(m−1)/2 ≤

1√
(m+ 1)/2

≤ 2√
2m

.

A similar argument works for l odd.

Lemma 26. For k ≥ 1

ck ≤
1√
k + 1

Proof. This lemma can be proven by induction: First note that c1 = 1/2 so the lemma is

true for k = 1. Assume for some particular k ≥ 1 that ck ≤ 1√
k+1

. Then

c2
k+1 −

1
k + 2

=
(

2k + 1
2(k + 1)

ck

)2

− 1
k + 2

≤
(

2k + 1
2(k + 1)

)2 1
k + 1

− 1
k + 2

=
−3k − 4

4(k + 1)3(k + 2)
≤ 0

so ck+1 ≤ 1√
k+2

.



232

Appendix D

Configurations for Two-Stage BP Test
in Section 4.6

This appendix describes the configurations for the chirplet graphs used in the simulations

for the two-stage BP test in Section 4.6. It is in the format of a Matlab-code readable

by ChirpLab (see Section 10.1). This software package accompanies the ETD copy of this

thesis and includes documentation for the functions in the code below (see also the file

TwoStageConfiguration.pdf included in the ETD copy).

D.1 Configuration for the First Stage

The following lines of code configure the first stage of the test.

% Note Fs: sampling frequency in Hz

J = 8

N = 2^J;

sldf = 8; % slope discretization factor

fmin = floor(40/Fs*N); % minimum frequency in chirplet graph

fmax = N/2-1; % maximum frequency in chirplet graph

csc = 1; % coarsest scale in chirplet graph

fsc = 1; % finest scale in chirplet graph

graphParamStepI = GetChirpletGraphParam(N,csc,fsc,sldf,[],fmin,fmax,’COLOREDNOISE’);

sbase = csc; % scale index for the base time interval in search

smin = 7;

smax = 9;
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D.2 Configuration for the Second Stage

The Matlab-function below is used to configure the chirplet graphs for the second stage of

the test. The input P is the power spectrum of the noise. A data file storing this power

spectrum can be found in the software package which comes with the ETD copy of the

thesis.

function [graphParamExtInt, CnormExtInt, maxLength] = InitGraphParam(P)

% InitGraphParam -- a utility script for configuring chirplet graph parameters

% and precalculating chirplet norms to use for extended intervals

% Input

% P noise spectrum

% Output

% graphParamExtInt graph parameters

% CnormExtInt chirplet norms

% maxLength maximum number of chirplets to use in the BP algorithm

smin = 7;

smax = 10;

nScales = smax-smin+1;

graphParamExtInt = cell(1,nScales);

CnormExtInt = cell(1,nScales);

maxLength = zeros(1,nScales);

% Different chirplet graph parameters are used for different

% lengths of base intervals that are extended

for s=smin:smax,

sindex=s-smin+1;

steepSlopeParam = 1;

J = s;

% CONFIGURATIONS FOR THE STATISTICS

Fs = 2048;



234
N = 2^J;

sldf = 8; % slope discretization factor

fmin = floor(40/Fs*N); % minimum frequency in chirplet graph

fmax = N/2-1; % maximum frequency in chirplet graph

csc = 0; % coarsest scale in chirplet graph

if (J==10),

fsc = 6; % finest scale in chirplet graph

ml = 16;

elseif(J==9),

fsc = 5; % finest scale in chirplet graph

ml = 16;

elseif(J==8),

fsc = 4; % finest scale in chirplet graph

ml = 8;

elseif(J==7),

fsc = 3;

ml = 8;

end

gp = GetChirpletGraphParam(N,csc,fsc,sldf,[],fmin,fmax,’COLOREDNOISE’);

if (steepSlopeParam>0),

% use steeper slopes at finest scales

gp{3}{fsc+1} = [-0.5:sldf*2^((fsc)-J):8];

if (steepSlopeParam>1),

gp{3}{fsc} = [-0.5:sldf*2^(fsc-1-J):8];

end

end

graphParamExtInt{sindex} = gp;

maxLength(sindex) = ml;

% calculate chirp norms
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CnormExtInt{sindex} = CTNormsDataStream(P,graphParamExtInt{sindex});

end
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Appendix E

Signal Model For Binary Black Hole
Coalescence

This section describes some of the test signals that were used in the numerical simulations

in Chapter 4. The signal model was provided to me by Philip Charlton, who also wrote the

remainder of this section. Since at the present time, this description has not been published,

we choose to include it in the thesis for completeness, with Philip’s permission.

Since the object of the exercise is to detect “real” gravitational waves, we will use as our

test signals a collection of physically realistic waveforms for binary black hole coalescence.

We use a modification of the method suggested by Anderson and Balasubramanian to model

a complete coalescence waveform [6]. The signal consists of an inspiral phase, a merger phase,

and a ringdown phase. While the inspiral and ringdown phase models are reasonable, the

simulated merger phase should not be taken to be physically realistic. Instead, it is meant

to approximate the gross time, frequency, and energy characteristics of a real merger.

The test signals are parametrised by the masses of the two bodies m1 and m2 in units

of solar mass M�. It is convenient to write the waveforms in terms of the total mass

M = m1 +m2 and the symmetric mass ratio η = m1m2/M
2. The final waveform consists of

three components combined in such a way that the result is continuous up to first derivatives:

h(t) =


hinsp(t) t ≤ 0

hmerge(t) 0 < t ≤ tm

hring(t) t > tm

(E.1)

where we have arranged for the inspiral phase to end at t = 0 and the merger phase to end

at t = tm.
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In the literature it is common to express the strain at the detector in terms of the +

and × polarisations, with factors depending on the orientation of the binary system and its

position in the sky relative to the axes of detector (see, for example, [8]). For simplicity

we will replace these factors by their values averaged over orientations and positions. We

then obtain an expression which is the sum of a cosine and a sine term, each with the same

amplitude A(t), which we combine into a single sinusoidal term of the form

h(t) =
√

2A(t) cos [φ(t)− π/4] . (E.2)

For consistency with definitions of A(t) and φ(t) in the literature we retain the factor of
√

2

and the phase offset −π/4.

For the inspiral component of the signal we use the non-spinning post2-Newtonian ap-

proximation for the phase in the form given by [77, eqn. 15.24],

φinsp(t) = φc −
2
η

[
Θ5/8 +

(
3715
8064

+
55
96
η

)
Θ3/8 − 3π

4
Θ1/4 (E.3)

+
(

9275495
14450688

+
284875
258048

η +
1855
2048

η2

)
Θ1/8

]
(E.4)

where

Θ(t) =
ηM�

5T�M
(tc − t) (E.5)

and T� = GM�/c
3 = 4.925491 × 10−6s is the mass of the sun in geometrised units. The

parameters φc and tc are the phase and time at which coalescence occurs. This gives an

instantaneous frequency

f insp(t) =
M�

8πT�M

[
Θ−3/8 +

(
743
2688

+
11
32
η

)
Θ−5/8 − 3π

10
Θ−3/4 (E.6)

+
(

1855099
14450688

+
56975
258048

η +
371
2048

η2

)
Θ−7/8

]
. (E.7)

For the amplitude of the gravitational wave strain we use the leading order (i.e., Newtonian)

expression given in [77, eqn. 15.27–28]. Averaging over orientations (ι, β) allows us to replace

the terms involving ι with 4
√

5. Further averaging over sky position gives an additional



238
reduction factor of 1/

√
5, so the final amplitude of both the + and × components is

Ainsp(t) =
8
5
T�c

D

ηM

M�

[
πT�Mf insp(t)

M�

]2/3

(E.8)

where D is the distance to the source.

A real inspiral would extend far into the past, with the instantaneous frequency ap-

proaching 0 as t −→ −∞. We will only model the part of the inspiral detectable by a

ground-based interferometer, that is, from the time the instantaneous frequency enters the

sensitive band of the detector above fs up to the commencement of the merger phase. Decid-

ing where the boundary between inspiral and merger lies is somewhat arbitrary. We follow

[38] in making the transition at the point where post-Newtonian approximations begin to

break down. Assuming that the mass parameters m1 and m2 are decided upon beforehand,

it is convenient to fix the time of transition from inspiral to merger occur at t = 0. A

conservative estimate is that errors in the 2PN approximation become significant when the

instantaneous frequency reaches

f0 =
M�
M
× 4100 Hz, (E.9)

so we can set tc by finding a suitable solution to f insp(0) = f0 [38]. Once this is known we

can calculate the time at which the inspiral enters the sensitive band by solving f insp(t) = fs.

Finally, we choose φc so that φinsp(0) = π/4 and the total phase in (E.2) is zero at t = 0.

The ringdown component is assumed to be an exponentially damped sinusoid with con-

stant frequency f ring, estimated to be

f ring =
[
1− 0.63(1− a)0.3)

]M�
M
× 32000 Hz, (E.10)

where a is a dimensionless spin parameter which is 0 for a Schwarzschild black hole and 1

for an extreme Kerr black hole [77, eqn. 18.3]. The ringdown phase is then

φring(t) = 2πf ring(t− tm) + φm, (E.11)

where we have introduced the ringdown phase φm at tm. This will be set later to match the

phase at the end of the merger.
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The amplitude model we use is adapted from [80],

Aring(t) =
A√
20π

T�c

D

M

M�
e−πf

ring(t−tm)/Q (E.12)

where Q = 2(1− a)−0.45 is the quality factor,

A = 4
[

πε

Q [1− 0.63(1− a)0.3]

]1/2

(E.13)

and ε is the fraction of M radiated as gravitational waves during the ringdown. The factor

of 1/
√

20π in (E.12) comes from averaging over orientations (giving a factor of 1/
√

4π)

and sky positions (giving a factor of 1/
√

5). When written in the form (E.2) the overall

amplitude is the same as that given in [77, eqn. 18.5]. In simulations we cut off the

ringdown at t = tm + 5Q/πf ring, that is, when the amplitude has been reduced by a factor

of e−5 ∼ 1/148.

Our inspiral component has been arranged to terminate at t = 0, with ringdown com-

mencing at t = tm. Since no analytic models exist for the merger part of the coalescence,

we fit the amplitude and phase functions to bridge the gap between inspiral and ringdown.

Flanagan and Hughes have estimated the merger duration to be tm ∼ 50M/M� × T� [38].

Assuming that the merger waveform is chirp-like of the form (E.2), a simple way to connect

the inspiral and ringdown waveforms is to require that the instantaneous frequency and am-

plitude functions be continuous up to first derivatives at the boundaries between the merger

component and each of the other two components. This gives four conditions that must be

satisfied by fmerge(t) and Amerge(t) at t = 0 and t = tm, so we will model fmerge(t) and

Amerge(t) by cubic polynomials,

fmerge(t) =
3∑

k= 0

fkt
k (E.14)

Amerge(t) =
3∑

k= 0

Akt
k . (E.15)

For the instantaneous frequency, the continuity condition fmerge(0) = f insp(0) immediately

tells us that f0 is the value given by (E.9), while continuity in the first derivative tells us
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that f1 = ḟ insp(0). The remaining coefficients f2 and f3 can be found by solving

fmerge(tm) = f ring (E.16)

ḟmerge(tm) = 0 (E.17)

noting that the right-hand side of (E.17) vanishes since f ring is constant. We also want

the phase to be continuous at t = 0, so we simply use the anti-derivative of fmerge with

appropriate constant of integration,

φmerge(t) = π/4 + 2π
∫
fmerge(t)dt . (E.18)

From φmerge(t) we can set φm = φmerge(tm).

For the merger amplitude coefficients we have A0 = Ainsp(0) and A1 = Ȧinsp(0). The

remaining continuity conditions

Amerge(tm) = Aring(tm) (E.19)

Ȧmerge(tm) = Ȧring(tm), (E.20)

can be solved to find A2 and A3. Note that this is slightly different from the procedure used

by Anderson and Balasubramanian in that they modeled Amerge(t) as a quartic polynomial.

The extra coefficient was fixed by requiring that the merger waveform satisfy an energy

condition, namely that the energy of the merger waveform be approximately three times

that of the ringdown waveform, as estimated by Flanagan and Hughes assuming a near-

maximal spin parameter a = 0.98. Justified by recent results from numerical experiments,

we instead used the value a = 0.7. With this choice of spin parameter we found that imposing

the energy condition produced a merger amplitude which looked artificially small compared

with the adjacent inspiral and ringdown amplitudes. A more satisfactory waveform was

obtained by simply fitting the amplitude with a cubic.
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Appendix F

Detection of Sinusoids of Unknown
Support

F.1 Statistical Model

We assume that we have given a long stream of M uniformly sampled data points where M

is a dyadic number:

yn = αMsn + zn, n = 0, 1, . . . ,M − 1,

where (sk) is a vector of equispaced time samples of a complex-valued local sinusoid, and

where z = (zk) is a complex-valued sequence of white noise where z = z1 + iz2 and z1 and z2

are two independent vectors of i.i.d. N(0, 1/2) variables. αM is assumed to be an unknown

real scalar. Let I = IM be some collection of subintervals in {0, . . . ,M − 1}. The signal is

sampled at a fixed rate of Ns samples per second so that sn = s(n/Ns) where s(t) is of the

form,

s(t) = ei(Nsωt+θ)1I(t)/
√
|I|,

where the support of the signal, I ∈ I, the frequency ω ∈ [0, 2π) and the phase offset θ ∈ R

are assumed to be unknown a priori. Denote the class of these signals by G(I). Observing

yk, the goal is to decide between,

H0,M : α = 0, i.e., the data is only noise,

and

H1,M : α 6= 0, i.e., there is a sinusoidal signal somewhere in the data.



242
As we let M → ∞, it is natural to ask whether there is a threshold phenomenon; i.e., a

rate ρM such that if αM grows slightly slower than ρM , every sequence of tests is asymp-

totically powerless and if αM grows faster than ρM there exists a sequence of tests that is

asymptotically powerful.

Remark: In this statistical model, the maximum frequency does not increase with the

number of samples M , but stays fixed and determined by the sampling frequency. This is

similar to common practical situations where data is collected at a fixed sampling rate over

a period of time. Letting M grow is analogous to gathering more data.

F.1.1 Three different cases for G(I)

We will consider three different cases for the set of signals in the alternative, differing only

in the set of possible supports I:

• Case 1: All the intervals in I have the same length, say, dyadic length 2j for some

j ∈ {0, . . . , log2M}

• Case 2: The intervals in I have dyadic lengths.

• Case 3: The intervals in I are the collection of all subintervals in {0, . . . ,M − 1}.

F.1.2 The near-optimal tests

Our approach will be based on the GLRT paradigm. We construct a dictionary of functions

of the form

sk,J = eiωkn1J(n)/
√
|J |, n = 0, . . . ,M − 1

where J belongs to a set of intervals J and the frequency ωk belongs to a set of discrete

frequencies Ω(J). Call this dictionary F = F(J). Before we give concrete choices for J,

we introduce a particular set of intervals. Let the set Jd,j of intervals of length 2j and

overlapping degree d = 0, 1, . . . be defined by

Jd,j =
{
J : J = {l2j−d, . . . , l2j−d + 2j − 1}, l = 0, 1, . . . ,M2d−j − 2d

}
.
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Define the measure of affinity between intervals by

ρ(I, J) =
|I ∩ J |√
|I|
√
|J |

.

We have the following lemma:

Lemma 27. For any interval I of length N = 2j, there is an interval J ∈ Jd,j such that

ρ(I, J) ≥ 1− 2−d−1.

Proof. Let I = [k, k+N − 1] and choose from Jd,j the interval J = [lN2−d, lN2−d +N − 1]

such that lN2−d is as close to k as possible. Then obviously

|lN2−d − k| ≤ N2−d−1.

Now I ∩ J is either [k, lN2−d + N − 1] or [lN2−d, k + N − 1], and therefore, |I ∩ J | ≥

lN2−d +N − k or |I ∩ J | ≥ k +N − lN2−d. In either case,

|I ∩ J | ≥ N − |lN2−d − k| ≥ N −N2−d−1.

This gives

ρ(I, J) ≥ N(1− 2−d−1)/(
√
N
√
N) = 1− 2−d−1.

Now we choose J = JM for the three cases:

• Case 1: We approximate I by a set of overlapping intervals. All these intervals have

the same length, 2j , as the intervals in I. Denote this set by Jd,j .

• Case 2: The approximating set of intervals is a set of overlapping intervals of every

possible dyadic length. Denote this set by Jd.

• Case 3: I is approximated by a set of extended intervals, Jl, as defined in Definition 4.

The set of discrete frequencies Ω(J) is defined by

Ω(J) =
⋃
J∈J

ΩJ



244
where

ΩJ =
{
ωk =

2πk
|J | logM

, k = 0, . . . , (|J | log(M)− 1)
}
.

Given a collection of intervals JM we define the test statistic:

T ∗M = max
f∈F(JM )

|〈y, f〉|. (F.1)

F.2 Results

The results in this section hold for cases 1, 2, and 3 for the sequence of tests is given in the

previous section. We have the following bound for our test statistics:

Theorem 15. For each η > 0,

PH0,M

(
T ∗M,JM

>
√

2(1 + η) logM
)
→ 0, M →∞.

We have the following lower bound:

Theorem 16. Let αM =
√

2(1− η) logM be a sequence of signal amplitudes with η > 0.

Then there is a sequence of distributions on local sinusoids in {0, . . . ,M−1} such that every

sequence of tests (TM ) is asymptotically powerless.

The upper bound:

Theorem 17. Let αM =
√

2(1 + η) logM be a sequence of signal amplitudes with η > 0.

Then the sequence of tests (T ∗M ) is asymptotically powerful.

F.3 Proof of Theorem 16:

Consider the following Bayes problem: Split the M data points into disjoint intervals of

length N each. This gives us K = M/N segments. On each segment, pick N orthonormal

sinusoids that have their support entirely in that segment. This results in N × K = M

orthonormal signals. Putting a uniform prior on these signals results in a Bayes problem

which is equivalent, by sufficiency, to the well-known needle-in-a-haystack problem. Indeed,

the inner products of the data and our M local sinusoids are Gaussian and all, but perhaps

one, with mean zero. Therefore, if αM grows slower than
√

2 log(M), every sequence of test

is asymptotically powerless. Note that this rate is independent of the signal support N .
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F.4 Proof of Theorem 15:

We start by stating some well-known concentration inequalities. Let γN be the canonical

Gaussian probability measure on RN with density

γN (dx) = (2π)−N/2 exp(−|x|2/2)dx.

We say that a function f : RN → R is a Lipschitz(C) function, or f ∈ Lip(C) for short, if

for x, y ∈ RN ,

|f(x)− f(y)| ≤ C‖x− y‖,

where ‖ · ‖ is the Euclidian norm. Then we have the following concentration of measure

inequality (see for example [56]):

Theorem 18 (Concentration Bound). If the function f : RN → R is Lipschitz(C), then

for any t > 0,

γN (|f(X)− E[f(X)]| > t) ≤ 2 exp
(
−t2/2C2

)
.

Since (E[f(X)])2 ≤ E[f(X)2], this implies:

Lemma 28. If f : RN → R is a non-negative Lipschitz(C) function, then for any t > 0,

γN

(
f(X) > t+

√
E[f(X)2]

)
≤ 2 exp

(
−t2/2C2

)
.

F.4.1 The distribution of 〈Z, eiωt1I(t)/
√
|I|〉

Consider the vector Z = (Zt, t ∈ {0, . . . ,M − 1}) of i.i.d. complex-valued random variables

where Zt = Z1
t +iZ2

t is a random variable with Z1 and Z2 i.i.d. N(0, 1/2). We wish to find the

distribution of the inner product1 〈Z, g〉, where g = [g0, . . . , gM−1] and gt = eiωt1I(t)/
√
|I|.

Let’s first look at Y = Y1 + iY2 := eiθZ = cos θZ1− sin θZ2 + i(sin θZ1 + cos θZ2), whose

distribution is easy to find since this is just a rotation of a vector of i.i.d. Gaussians. Namely,

by using vector notation, we have

Y :=

 Y1

Y2

 =

 cos θ − sin θ

sin θ cos θ

 Z1

Z2

 ,
1The inner-product is defined as 〈a, b〉 =

P
k akb

∗
k for complex vectors a and b.
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so Y is a multivariate Gaussian vector of mean 0 and with the same covariance matrix as

[Z1 Z2]T . That is, Y1 and Y2 are i.i.d. N(0, 1/2). Then we can write

Zte
−iωt = Y 1

t + iY 2
t

where Y 1
t , Y 2

t , t ∈ I are i.i.d. N(0, 1/2). We have that
∑

t∈I Y
1
t and

∑
t∈I Y

2
t are i.i.d

N(0, |I|/2) and therefore,

〈Z, g〉 =
1√
|I|

∑
t∈I

Zte
−iωt =

1√
|I|

(∑
t∈I

Y 1
t + i

∑
t∈I

Y 2
t

)
= W 1 + iW 2,

where W 1 and W 2 are i.i.d. N(0, 1/2). Then we have:

Lemma 29. Let Z and g be as above. Then, E|〈Z, g〉|2 = 1. Also,

〈Z, g〉 = W 1 + iW 2,

where W 1 and W 2 are i.i.d. N(0, 1/2).

A simpler derivation of the lemma: We could also have simply used vector notation

to derive this lemma. Indeed, since 〈Z, g〉 = g∗Z we have

E|〈Z, g〉|2 = Eg∗ZZ∗g = g∗Ig = ‖g‖2 = 1.

This shows that the lemma also holds in case the random vector Z is real standard normal,

Z ∼ N(0, I). In the real-valued case we get that 〈Z, g〉 = W 1 + iW 2 where W 1 and W 2 are

dependent normal variables and not necessarily with variance 1/2.

F.4.2 Bounds on |〈Z, eiωt1I(t)/
√
|I|〉|

Let g be a vector of norm 1, i.e., ‖g‖ = 1. Note that |〈Z, g〉| is a Lipschitz(1) functional on

a Gaussian field. Namely, for any vectors x and y of suitable sizes, we have

∣∣∣|〈x, g〉| − |〈y, g〉|∣∣∣ ≤ |〈x− y, g〉| ≤ ‖x− y‖ · ‖g‖ = ‖x− y‖,
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where we have used the triangular inequality followed by the Cauchy-Schwartz inequality.

As before, let g = [g0, . . . , gM−1] with gt = eiωt1I(t)/
√
|I|. From Lemma 29 we have that

E|〈Z, g〉|2 = 1, and therefore by Lemma 28 we get for every t > 0 that

P (|〈Z, g〉| > 1 + t) ≤ 2e−t
2/2. (F.2)

Consider a set of vectors F of cardinality |F| ≤ M. Pick some η > 0. Then by taking

t =
√

2(1 + η) logM and using a union bound, we get

P

(
sup
g∈F
|〈Z, g〉| > 1 +

√
2(1 + η) logM

)
≤ 2|F| 1

M1+η
≤ 2
Mη

.

F.4.3 Case 1: Size of support known

Assume that the size of the support of the unknown signal is N . We have,

#Jd ≤
M

N
2d−1

and on each interval we correlate the signal with complex sinusoids of N logM different

equispaced frequencies. The size our dictionary F of test functions satisfies the bound

|F| ≤ 2d−1M logM.

Let η > 0. Taking t =
√

2(1 + η) logM and using a union bound we get from the inequal-

ity (F.2) that

P

(
sup
g∈F
|〈Z, g〉| > 1 +

√
2(1 + η) logM

)
≤ 2 · 2d−1M logM

1
M1+η

= 2d
logM
Mη

.

As long as d = dM goes to infinity slowly enough, say d/ log(M) → 0 as M →∞, we have

P
(

supg∈F |〈Z, g〉| >
√

2(1 + η′) logM
)
→ 0 as M →∞, for any constant η′ > 0.
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F.4.4 Case 2: Support is of an unknown dyadic length

Assume we consider dyadic intervals of length Nj = 2j where j = 0, . . . , log2M . Let Jd,j be

the set of intervals of overlapping degree d and length 2j . Then,

#Jd,j ≤
M

Nj
2d−1.

On each interval in Jd,j we correlate the signal with complex sinusoids of Nj logM different

equispaced frequencies so the number of test functions corresponding to Jd,j is 2d−1M logM .

Then the size of our dictionary F satisfies

|F| ≤ 2d−1M logM(1 + logM) ≤ 2dM(logM)2.

Similar to Case 1,

P

(
sup
g∈F
|〈Z, g〉| >

√
2(1 + η) logM

)
→ 0, as M →∞,

provided that d = dM does not increase too fast (dM = o(logM) is sufficient).

F.4.5 Case 3: Support is of unknown length

Recall Lemma 2 for the set of extended dyadic intervals. The number of dyadic intervals

of length 2s is M/2s and the number of l-level extensions per dyadic interval is 2 · 4l. The

maximum length of an interval J from Jl[I] is 4|I| and the maximum number of frequencies

considered on J is 4|I| log(M). Thus, the number of test functions resulting from Jl[I] is

bounded by

M/|I| × 2 · 4l × 4|I| logM = 8 · 4l ·M logM.

There are log(M)+1 to consider for the dyadic intervals, so the size of our dictionary satisfies

|F| ≤ 16 · 4l ·M(logM)2.

By similar arguments as for cases I and II, we get

P

(
sup
g∈F
|〈Z, g〉| >

√
2(1 + η) logM

)
→ 0, as M →∞,
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as long as l = lM does not increase too fast (lM = o(logM) is sufficient).

F.4.6 Proof of Theorem 17:

Assume

yn = αMe
i(ωn+θ) 1I(n)√

|I|
+ zn

with αM ≥
√

2(1 + η) logM . We wish to show, using an appropriate sequence of thresholds,

the test T ∗M rejects H0,M with overwhelming probability. Then,

T ∗ ≥

∣∣∣∣∣〈y, eiωkn 1J(n)√
|J |
〉

∣∣∣∣∣
for every frequency ωk ∈ Ω(J) and every interval J ∈ J. In particular, this inequality holds

for an interval J such that

ρ(I, J) ≥ 1− 2−b

for some b depending on either l or d in such a way, that, as l or d increases without bounds

as M →∞, so does b. Such a b exists by Lemma 27 and Lemma 2. On the interval J , there

is a frequency ωk ∈ Ω such that

|ω − ωk| ≤
π

|J | logM
.

From previous results we can write

〈y, eiωkn 1J(n)√
|J |
〉 = αM 〈ei(ωn+θ) 1I(n)√

|I|
, eiωkn

1J(n)√
|J |
〉+ 〈z, eiωkn 1J(n)√

|J |
〉

= αM
eiθ√
|I|
√
|J |

∑
n∈I∩J

ei(ω−ωk)n +W 1 + iW 2

= βM +W 1 + iW 2,

where W 1 and W 2 are i.i.d. N(0, 1/2) and we have replaced the deterministic term by βM .

Using the inequality, cos(x) ≥ 1− x2/2, we get

cos((ω − ωk)t) ≥ 1− (ω − ωk)2t2 ≥ 1− π2

|J |2(logM)2
t2.
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Then we get,

∣∣∣∣∣ ∑
n∈I∩J

ei(ω−ωk)n

∣∣∣∣∣ =

∣∣∣∣∣∣
|I∩J |∑
n=0

ei(ω−ωk)n

∣∣∣∣∣∣
≥ Re


|I∩J |∑
n=0

ei(ω−ωk)n

 =
|I∩J |∑
n=0

cos((ω − ωk)n)

≥ |I ∩ J |
(

1− π2

|J |2(logM)2
|I ∩ J |

)
≥ |I ∩ J |

(
1− π2

(logM)2

)
,

since |I ∩ J | ≤ |J |. Therefore,

|βM | =

∣∣∣∣∣αM eiθ√
|I|
√
|J |

∑
n∈I∩J

ei(ω−ωk)n

∣∣∣∣∣ ≥ αM · ρ(I, J)
(

1− π2

(logM)2

)
≥ αM (1− 2−b)

(
1− π2

(logM)2

)
.

Since E|W 1 + iW 2|2 = 1 and | · | is Lipschitz(1), Lemma 28 gives us,

P (|W 1 + iW 2| > 1 + t) ≤ 2e−t
2/2 (F.3)

for all t > 0. Let τM,α denote the 1 − α quantile of T ∗M . Let αM → 0 slowly enough such

that

τM,αM ∼
√

2 logM, as M →∞.

Theorem 15 implies that for all sufficiently large M we have

τM,αM <
√

2(1 + η′) logM.

Then, using the previous results and the triangular inequality,

P (T ∗M < τM,αM ) ≤ P

(∣∣∣∣∣〈y, eiωkn 1J(n)√
|J |
〉

∣∣∣∣∣ < τM,αM

)
= P

(∣∣βM +W 1 + iW 2
∣∣ < τM,αM

)
≤ P

(
|βM | − |W 1 + iW 2| < τM,αM

)
.



251
Picking t = |βM |− τM,αM and taking M and d (or l, in Case 3), large enough so that t→∞

as M →∞, we get from the inequality (F.3) that P
(
|βM | − |W 1 + iW 2| < τM,αM

)
→ 0 as

M →∞, so

P (T ∗M < τM,αM )→ 0, M →∞.

F.5 Detection of Linear Chirps

We expect to get similar results for the detection of linear chirps instead of monochromatic

sinusoids. We would replace the local sinusoids by local linear chirps in the GLRT, and use

the same kind of techniques to establish upper bounds. The lower bound we had before still

holds in this case since the set of sinusoids is a subset of the set of linear chirps.
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