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Spin Seebeck effect in an (In,Ga)As quantum well with equal Rashba and Dresselhaus
spin-orbit couplings
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We demonstrate that a spin-dependent Seebeck effect can be detected in quantum wells with zinc-blend structure
with equal Rashba-Dresselhaus spin-orbit couplings. This theory is based on the establishment of an itinerant
antiferromagnetic state, a low total-energy configuration realized in the presence of the Coulomb interaction
enabled by the k = 0 degeneracy of the opposite-spin single-particle energy spectra. Transport in this state is
modeled by using the solutions of a Boltzmann equation obtained within the relaxation time approximation.
Numerical estimates performed for realistic GaAs samples indicate that at low temperatures, the amplitude of
the spin Seebeck coefficient can be increased by scattering on magnetic impurities.
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I. INTRODUCTION

Of all the rich and varied phenomenology associated
with the presence of the Rashba and Dresselhaus spin-orbit
interactions in quantum wells with zinc-blend structure, the
properties of the regime in which the two coupling strengths are
equal have attracted considerable attention since they show-
case unusual features such as very long spin relaxation rates
[1–3] or the absence of the antilocalization correction to the
conductivity [4,5]. In this paper we discuss a possible add-on
to this panoply, namely the existence of a spin Seebeck effect.

The idea of incorporating spin effects in the usual charge-
only thermoelectric phenomenology, a general topic known
as spin caloritronics [6,7], has been recently motivating a
significant effort in theoretical and experimental research. The
experimental detection of a spin-dependent current driven by
a temperature gradient in ferromagnets [8,9], ferromagnetic
semiconductors [10], and semiconductors in the presence of
a magnetic field [11] helped define the spin Seebeck effect
as a fundamental property of physical systems characterized
by an intrinsic spin polarization. The original picture of
the spin-dependent thermal current originating from unequal
populations of spins has evolved to incorporate transport
through spin waves [12], once the spin Seebeck effect was
observed in magnetic insulators [13].

Defined as the proportionality coefficient between the elec-
tric field that appears in an open circuit and the thermal gradient
that induces it, the Seebeck coefficient or thermopower S was
early on recognized as a measure of the efficiency of transport.
In normal metallic systems its numerical value is small, as it
is determined by the ratio of the thermal energy to the Fermi
energy. This result is a consequence of the almost complete
cancellation of the energy current carried by electrons above
the Fermi level with that carried by electrons below the Fermi
level.

Disrupting this cancellation requires the presence of two
factors, as it was recognized long ago in Ref. [14], where the
usual charge Seebeck coefficient was calculated in a system
with a spin-density-wave ground state. First, it is necessary
that two distinct, unequal groups of electrons exist, such as

one can obtain through spin polarization. Second, a scattering
mechanism that provides a unidirectional energy transfer
between these groups, needs to be introduced, for example one
that involves spin flips. While the latter factor can be controlled
rather easily through doping with magnetic impurities, it is the
first criterion that drastically limits the number of systems that
can be susceptible to this approach, as naturally created and
sustained spin polarization is rare.

In this paper we generalize these principles to the case of
spin Seebeck effect and discuss how both these criteria are
fulfilled in a quantum well with spin-orbit interaction in the
regime where the strengths of the Rashba and Dresselhaus
couplings are equal, leading as a consequence to an enhanced
spin Seebeck coefficient. Central to the argument presented
here is the existence of an antiferromagnetic ground state of the
electron system in the well when α, the strength of the Rashba
coupling, is equal to β, the strength of the linear Dresselhaus
coupling, a configuration that results from the minimization
of the total energy of the system in the presence of the
Coulomb interaction [15,16]. Since the spin Seebeck effect is
directly conditioned by the antiferromagnetic spin alignment,
otherwise being absent in a paramagnetic state, its detection in
a quantum well prepared in the α = β regime can serve as an
experimental probe for the existence of such a long range mag-
netic order. Furthermore, we follow Ref. [14] and show that the
magnitude of the Seebeck coefficient can be greatly enhanced
at low temperatures by scattering on magnetic impurities since
this process introduces an energy-dependent lifetime which
increases the difference between the energy currents carried by
the opposite-spin electrons. Our theoretical model predicts this
phenomenology to occur in an independent, single quantum
well with SOI, a different setup than the recent analysis of
the spin-dependent transport in a quantum well with SOI
connected to ferromagnetic reservoirs [17]. Moreover, the
itinerant antiferromagnetic state in which the spin Seebeck
effect can be measured represents an interesting alternative to
the spin wave model for temperature induced spin currents in
ferromagnetic insulators [12]. Because in our problem the spin
polarization is related to a fundamental property of the ground
state, its coherence is maintained over large distances, making
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this system one of the most attractive candidates for exploring
spin-dependent thermoelectric effects.

In the first section of this paper we outline the theory of the
formation of the weak itinerant antiferromagnetic ground state
in a quantum well with equal Rashba-Dresselhaus spin-orbit
interactions [15,16]. In essence, in the presence of the Coulomb
interaction, the degeneracy in the opposite-spin single-particle
states that is realized at k = 0 enables a lowering of the
total energy of the many-body state when the electron spin
is allowed to freely rotate in the momentum state. The
quasiparticles thus created are linear combinations of single
particle states with spin up and down whose polarization
changes continuously in k space. This antiferromagnetic
spin alignment leads to a nonzero value of the volumic
spin polarization. The transport theory of these quasiparticles
formulated within the time relaxation approximation of the
Boltzmann equation is presented in the second section. Finally,
we calculate the spin thermopower in a realistic system and
present its temperature variation as a function of the strength
of the scattering on magnetic impurities.

II. THE DESCRIPTION OF THE SYSTEM

We consider a two-dimensional electron system in the (x,z)
plane (the ŷ axis is perpendicular on the plane) that experiences
a Rashba and Dresselhaus spin-orbit interaction linear in the
electron momentum, of strengths α and β, respectively. The
single particle Hamiltonian of an electron of wave-vector
k = {kx,kz} and spin σ = {σx,σy,σz} is given by

H1 = �
2k2

2m∗ + �α(σzkx − σxkz) + �β(σzkz − σxkx). (1)

A real space rotation (clockwise about ŷ) in the x-z plane is
used to introduce the new momentum coordinates k′

x = (kx +
kz)/

√
2 and k′

z = (kz − kx)/
√

2 and the new spin projections
σ ′

x = (σx + σz)/
√

2 and σ ′
z = (σz − σx)/

√
2. In this frame, the

expression of the Hamiltonian becomes

H1 = �
2(k′

x)2

2m∗ + �
2(k′

z)
2

2m∗ + �(α + β)σ ′
zk

′
x − �(α − β)σ ′

xk
′
z.

(2)
When α = ±β, one of the two spin-orbit terms cancels and
the Hamiltonian commutes with the remaining component of
the spin operator. We select α = β, drop the prime indices,
and rewrite the Hamiltonian in a simplified form,

H1 = �
2

2m∗ (kx − Qσz)
2 + �

2k2
z

2m∗ − �
2Q2

2m∗ , (3)

where Q = 2m∗α/�x̂ is a displacement vector in the momen-
tum space parallel to the x̂ axis.

For a sample of unit area, the spin-dependent eigenstates of
Eq. (3) are plane waves,

ψk,σ (r) = eik·r|σ 〉, (4)

of energy eigenvalues, written in respect with the constant
−�

2Q2/2m∗,

εk,σ = �
2(kx − σQ)2

2m∗ + �
2k2

z

2m∗ , (5)

where σ is 1 for |↑〉 and −1 for |↓〉.

FIG. 1. The single particle spectrum of a 2D electron system
with equal Rashba-Dresselhaus linear couplings. The opposite-spin
energies ε↑ and ε↓ are degenerate at k = 0, the source of a spin
instability that leads to the formation of two new quasiparticles of
energies E− and E+. The states that overlap at k = 0 are plane waves
of the same momentum.

The itinerant antiferromagnetic order we consider as a
basis of our transport theory is a result of the degeneracy
in the single particle spectrum at k = 0, as described in
Fig. 1. The existence of single degeneracy points in the
single particle energy spectrum has been known to lead to
the establishment of long range magnetic order. Such phases
were studied both theoretically and observed experimentally
in single quantum wells [18,19], double layers [20–22], and
in multilayers [23–25]. Depending on the nature of the single
particle states involved in the creation of the spin degeneracy,
the resulting magnetic phases where found to be either spiral
spin density waves (SDW) [24,25] or canted antiferromagnetic
[20,21]. Following the general treatment of spin instabilities
in Fermi liquids, first developed by Overhauser in his SDW
theory [26,27], one can show that the ground state energy
of the system in the presence of the Coulomb interaction,
approximated within the Hartree-Fock, is obtained for an
antiferromagnetic spin alignment [15,16] which corresponds
to two new quasiparticle, whose eigenstates can be written in
terms of the variational parameter θk as

ψk,−(r) = (cos θk|↑〉 + sin θk|↓〉)eik·r,

ψk,+(r) = (− sin θk|↑〉 + cos θk|↓〉)eik·r. (6)

In the basis of these functions, the single-particle Hamilto-
nian becomes

H =
(

εk,↑ −gk
−gk εk,↓

)
, (7)

where εk,σ are the noninteracting electron energies, while
−gk is the off-diagonal Hartree-Fock coupling potential that
describes the generalized exchange between states of opposite
spin. Its nonzero value is a direct consequence of the ab initio
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assumption that the ground state of the electron system in the
presence of the energy degeneracy at k = 0 corresponds to the
states described Eq. (6). The eigenvalues generated by solving
Eq. (7) are the new single-particle energies,

E±
k = 1

2

[
εk,↓ + εk,↑ ±

√
(εk,↓ − εk,↑)2 + g2

k

]
(8)

expressions that pinpoint gk as the gap between the single-
particle energy states at the point of degeneracy k = 0. They
also determine the energy dependence of the occupation
numbers, self-consistently, fk± = (e(Ek±−EF )/kBT + 1)−1. At
minimum total energy, the variational parameter θk which
determines the direction of the single particle spin polarization
satisfies

tan 2θk = gk

εk,↓ − εk,↑
, (9)

leading to the self-consistent equation for the gap function gk,

gk =
∑

k′
v(k − k′)

gk′(fk′− − fk′+)√
(εk′,↓ − εk′,↑)2 + g2

k′

, (10)

with v(k − k′) = 2πe2/κ|k − k′| the Fourier transform of
the bare Coulomb interaction in a two-dimensional (2D)
environment of dielectric constant κ . The Fermi energy EF

is established by the constraint that the number of particles in
the system remains the same,

n =
∑
k,±

fk±. (11)

The average of the spin operator on these states generates a spin
polarization only along the x̂ axis, parallel to the displacement
vector Q,

P =
∑
k,±

〈ψk±|σ |ψk±〉fk± = x̂
∑

k

sin 2θk(fk−−fk+). (12)

III. TRANSPORT IN THE ANTIFERROMAGNETIC STATE

We model the transport properties of the antiferromagnetic
state as a two-channel process occurring separately in the +
and − minibands. Since the single particle states described
by the canonical transformations Eq. (6) represent exact
eigenstates of the noninteracting Hamiltonian, the spin and
charge currents carried by these states are defined as the
averages of the generalized momentum p − �Qσz on these
states, multiplied correspondingly by the electric charge and
spin unit. Therefore, the total charge (c) and x̂-polarized spin
(s) currents are given by

jc = −e
∑
k,±

〈ψ±|p − �Qσz

m∗ |ψ±〉�fk±, (13)

jxs = �

2

∑
k,σ,±

〈ψ±| (p − �Qσz)σx + σx(p − σz�Q)

2m∗ |ψ±〉�fk±,

(14)

where �fk± is the deviation from equilibrium of the single
particle occupation number under the effect of the external
perturbation.

In the following considerations we will focus only on the
deviation in the presence of an electric field rather than a
temperature gradient, as the Seebeck coefficient in both the
charge and spin case is calculated by using the Mott formula
which correlates the Seebeck coefficient with the derivative of
the logarithm of the corresponding differential conductivity
σc,s(E) evaluated at the Fermi energy. This algorithm is
similarly applicable for both spin and charge are carried by
single particle states that satisfy the same transport equation
as discussed in Ref. [7]:

Sc,s = −π

3

kB

e

d ln σc,s(E)

dE

∣∣∣∣
E=EF

. (15)

In the presence of an electric field E , the out-of-equilibrium
part of the distribution function is written in the relaxation time
approximation as

�fk± = −e(E · vk±)τ (Ek±)

(
− dfk±

dEk±

)
. (16)

τ (Ek±) is the relaxation time, considered a function of energy
only.

Considering the temperature range of interest in this prob-
lem, henceforth we approximate (−dfk±/dEk±) = δ(EF −
Ek±). Moreover, in the same temperature range, we assume
that the variation of the antiferromagnetic gap is negligible and
gk(T ) = const.

We define the quasiparticle velocities,

vk± = 〈ψ±|p − �Qσz

m∗ |ψ±〉 = 1

�
∇kEk±

= �

m∗ (k ± Q cos 2θk), (17)

and note that depending on the relative orientation of the
electric field E and the wave vector Q there are two different
transport modes, normal (n) and parallel (p),

v(n)
k± = �k/m∗, v(p)

k± = �Q
m∗Q2

(k · Q ± Q2 cos 2θk). (18)

The corresponding n or p differential conductivity expressions
for the charge and spin current, polarized along the x̂ direction
result immediately,

σ (n,p)(E) = e2
∑
k,±

�k
m∗ v(n,p)

k± τ (n,p)(Ek±)δ(E − Ek±),

σ x(n,p)
s (E) = −e�

2

∑
k,±

sgn(±) sin 2θk
�k
m∗ v(n,p)

k± τ (n,p)(Ek±)

×δ(E − Ek±) (19)

[sgn(±) = ±1].
The weak variation of the differential charge and spin

conductivities, Eq. (19) with energy generates the very
small Seebeck coefficient in homogeneous systems. Transport
coefficients can be enhanced through scattering processes that
preserve the population imbalance of up and down spin states
created through antiferromagnetic order by introducing an
energy-dependent relaxation lifetime. As shown in Ref. [14]
this can be realized by considering a scattering potential that
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has a magnetic component, of the type,∑
i

[V δ(r − Ri) + Jσ · Siδ(r − Ri)], (20)

where σ is the electron spin at the site of the magnetic scatterer
of spin S. V is the isotropic scattering potential and J is the
strength of the magnetic potential. For this choice of potential,
a long but straightforward calculation based on applying the
Fermi golden rule inside the collision integral of the Boltzmann
transport equation provides values for the normal and parallel
relaxation times [14]. Thus,

1

τ (n)(Ek±)
= πNi

�2

{(
V 2 + J 2S2

z

)
I0(Ek±)

+ sin 2θk
(
V 2 − J 2S2

z

)
I1(Ek±)

+ (JS−)2

2
η(E,�E)[I0(Ek± − �E)

+ sin 2θkI1(Ek± − �E)]

+ (JS+)2

2
η(Ek±, − �E)[I0(Ek± + �E)

+ sin 2θkI1(Ek± + �E)]

}
. (21)

This result assumes a concentration Ni of impurities with
same spin S whose projection on the ẑ axis is Sz, while its
perpendicular components are (S±)2 = S(S + 1) − S2

z . In the
numerical evaluations Sz is replaced by its thermal average.
�E is the Zeeman splitting in the presence of the magnetic
impurity which parametrizes the function η(Ek±,�E), a
measure of the collision inelasticity given by

η(Ek±,�E) = e(Ek±−EF )/kBT + 1

e(Ek±−EF )kBT + e−�E/kBT
. (22)

I0(Ek±) and I1(Ek±) represent the density of states and the
spin polarization at energy Ek±,

I0(Ek±) =
∑

k′
δ(Ek± − Ek′±),

I1(Ek±) =
∑

k′
sin 2θk′δ(Ek± − Ek′±). (23)

The parallel mode relaxation time is

τ (p)(Ek±) = τ (n)(Ek±)

[
1 + πNi

�

cos 2θn(Ek±)
(
V 2 − J 2S2

z

)
v

p

k±

∑
k′ cos 2θk′v

p

k′±τ (n)(Ek±)δ(Ek± − Ek′±)

1 − πNi

�

(
V 2 − J 2S2

z

) ∑
k′ cos2 2θk′τ (n)(Ek±)δ(Ek± − Ek′±)

]
.

(24)

IV. RESULTS AND CONCLUSION

We present numerical results of the gap equation for a
GaAs (effective mass m∗ = 0.067, dielectric constant κ = 13)
quantum well of electron density n = 4×1015 m−2. The α = β

state was identified from the antilocalization peak of the
quantum corrections to the conductivity in the weak scattering
regime [28] and found to correspond to a value α = 9×102

m/s. For the given particle concentration, we define the Fermi
momentum of the isotropic system (in the absence of SOI),
kF = √

2πn = 1.58×108 m−1 which henceforth will be used
as a unit in the momentum space. Correspondingly, the energy
scale of the problem is set by the single particle Fermi
energy EF = �

2k2
F /2m∗ = 12.88 meV. For these parameters,

Q = 2m∗α/� = 2α/vF = 7.2×10−3kF , while the Fermi tem-
perature which sets the temperature scale is TF = 150 K.

An iterative calculation is first employed to obtain a solution
of the gap equation plotted as a function of temperature
in Fig. 2. To incorporates a qualitative description of the
additional screening that can appear in the system on ac-
count of short range Coulomb interaction effects beyond the
Hartree-Fock approximation, our computation is performed
with an Yukawa potential of screening constant μ = 10−3

(expressed throughout in kF units), whose Fourier transform
is v(q) = 2πe2/κ

√
q2 + μ2. This step is necessary to avoid

the divergence of the Fourier transform in one dimension in
the numerical treatment. At each temperature, the Fermi level
EF is calculated from the condition that the particle density

remains constant, Eq. (11). Here we show the variation of the
gap function at the center of the Fermi disk, a good indicator
for the temperature range in which one expects to have an
antiferromagnetic state. Our results indicate that the critical
temperature of the system is about 90 K. In the following

FIG. 2. The variation of the gap function at the center of
the Fermi surface and of the spin polarization for a screening
constants μ1 = 10−3 in a GaAs quantum well with n = 4×1015 m−2,
Q = 7.2×10−3kF as a function of temperature.
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FIG. 3. The variation of the spin Seebeck coefficient, expressed
in kB/e = 86.3 μV/K units, for the normal in (a) and parallel in (b)
mode with temperature for different values of the ratio J/V . The gap
value is 0.2EF , while the polarization is 10%. The temperature unit
is set by the spin-flip energy and corresponds to 35 K.

evaluations the ratio of the spin-dependent scattering potential
J to the isotropic potential V , J/V , is used as a parameter.
The former is set to J = 0.03 eV, while V is allowed to vary.
The impurity spin is S = 5/2. The chosen values of J and p

give the value of the Zeeman splitting �E = pJ and establish
the temperature unit �E/kB . T = 1 corresponds to 35 K.
Since the temperature unit imposed by the magnetic impurity
scattering is much smaller than the critical temperature of the
antiferromagnetic transition, we will assume that in the low
temperature range we are interested in the gap variation with
temperature is negligible and consequently the gap function is
considered constant, equal to 0.2EF .

The small value of the Q/kF in the GaAs quantum well
selected for the numerical evaluation leads to a charge Seebeck
coefficient, which depends on (Q/kF )2, that is very close in
value to that of a homogeneous system and we choose not to
plot it. In contrast, as the two minibands have opposite spin
polarization, the spin Seenbeck coefficient, linear in Q/kF , is
finite, while its amplitude increases with the strength of the
magnetic impurity scattering.

In Fig. 3 we present the values of the spin Seebeck
coefficient for different values of the ratio J/V for the
normal and parallel transport modes. The current of course
is spin polarized after x̂. While for J > 0 the spin Seebeck
coefficient value increases weakly with the strength of the
magnetic scattering vs the isotropic magnetic scattering, its
magnitude varies dramatically for J < 0, where an anomalous
high value is registered for a sufficiently large magnetic
scattering. The temperature at which the peak in the spin
Seebeck coefficient value occurs is determined by the Zeeman
energy corresponding to a spin-flip of the magnetic impurity.

In conclusion, we showed that in an 2D electron system
with equal Rashba and Dresselhaus spin-orbit couplings, an
unusual high value of the Seebeck coefficient is possible to
exist at low temperature when the impurity scattering contains
a magnetic component. This result originates in the confluence
of the magnetic order imposed by the minimization of the total
energy of the electron system in the presence of the Coulomb
interaction and the unidirectional energy transfer in the spin-
flip scattering. The overall amplitude of the effect is determined
by the degree of polarization of the electron system and the
strength of the magnetic scattering.
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