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Conductance oscillations of core-shell nanowires in transversal magnetic fields
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We analyze theoretically electronic transport through a core-shell nanowire in the presence of a transversal
magnetic field. We calculate the conductance for a variable coupling between the nanowire and the attached
leads and show how the snaking states, which are low-energy states localized along the lines of the vanishing
radial component of the magnetic field, manifest their existence. In the strong-coupling regime they induce flux
periodic, Aharonov-Bohm-like, conductance oscillations, which, by decreasing the coupling to the leads, evolve
into well-resolved peaks. The flux periodic oscillations arise due to interference of the snaking states, which is a
consequence of backscattering at either the contacts with leads or magnetic or potential barriers in the wire.

DOI: 10.1103/PhysRevB.93.205445

I. INTRODUCTION

Design and technological realization of quantum nanode-
vices requires nanoscale systems of well-defined and control-
lable properties. Recently, tubular semiconductor structures
turned out to be promising building blocks of such appliances.
Nanotubes of very narrow but finite thickness may be achieved
in a few different ways. In the case of quantum wires built of
narrow-gap materials surface states may induce Fermi-level
pinning above the conduction-band edge, which results in
accumulation of electrons in the vicinity of the surface [1].
Nowadays it has become feasible to combine two (or even
more) different materials into one vertical structure, i.e.,
core-shell nanowires (CSNs). This provides a possibility to
achieve thin tubular shells surrounding a core nanowire or other
shells. One of the advantages of these systems is a possibility
to establish band alignment through the thicknesses of the
components [2–4] and thus grow structures in which electrons
are confined only in narrow shell areas [5,6]. Moreover, the
core part may be etched such that separated nanotubes are
formed [7,8].

Most commonly CSNs have hexagonal cross sections [6–8],
but triangular [9,10] and circular [11] systems have also been
achieved. Electrons confined in prismatic CSNs may form
conductive channels along the sharp edges [2,12–17]. Rich
quantum transport phenomena have been observed in CSNs,
e.g., flux periodic, similar to Aharonov-Bohm (AB), magne-
toconductance oscillations [6,18], single electron tunneling,
or electron interference [6,11]. Very interesting effects have
been predicted in the presence of a strong magnetic field
perpendicular to the wire axis. In particular, the field induces
a complex topology of the electronic states. Low-energy
electrons may be found around two channels along the CSN
axis where the radial component of the field vanishes by
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changing sign. Carriers on both sides of the lines are deflected
towards opposite directions and thus confined into so-called
snaking states [19–22]. Higher-energy electrons start to occupy
Landau states and form cyclotron orbits localized in the
areas where the radial component of the field takes maximal
values. With increasing energy electrons move towards the
sample ends and form edge states [22]. To the best of our
knowledge experimental investigation of magnetotransport in
ballistic CSNs with magnetic field transversal to the nanowire,
and of the effects of snaking states, have only recently been
attempted [23].

In this paper we focus on thin cylindrical conductive
shells since in such systems carrier localization or conductive
channels are induced only by an external magnetic field and
thus such samples allow us to observe purely magnetic effects.
According to our recent calculations the existence of snaking
states leads to resolved resonances of the conductance when
the CSN is weakly coupled to external leads [24]. In the present
paper we extend these results and analyze signatures of snaking
states in the conductance for a wide range of sample-lead
coupling strength which can be controlled by variable potential
barriers. We show that interference of the snaking states, due to
backscattering from magnetic or potential barriers, may lead
to flux periodic magnetoconductance oscillations, detectable
in transport experiments.

The paper is organized as follows. We define the model of
the system in Sec. II and describe the computational method
in Sec. III. The results and their discussion are presented in
Sec. IV while the final remarks are contained in Sec. V.

II. THE MODEL

The model of a CSN used here is a simple cylindrical
surface of radius ρ and length Lz, through which a current
can flow from one end to another due to a potential bias. We
treat the electrons like a cylindrical two-dimensional electron
gas. We consider a magnetic field perpendicular to the axis of
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FIG. 1. (a) The CSN is a cylindrical surface of radius ρ and length
Lz nm (blue color). The wavy lines with arrows indicate snaking orbits
propagating along the axes of zero radial magnetic field (thin red
dotted lines). The contacts with the source and the drain electrodes
are shown (gold color). (b) Gaussian potential barriers of variable
height placed along the CSN.

the cylinder. When the field is sufficiently strong low-energy
electrons can travel along the snaking orbits created along the
two lines of the zero radial component, at polar angles ϕ = π/2
and 3π/2, as illustrated in Fig. 1(a). Two leads are attached to
the CSN, one at each end of it, which are treated as particle
reservoirs, without a specified shape. Conventionally, we call
them Source (S) and Drain (D).

Two potential barriers are placed along the nanowire, at z =
±b, symmetrically around the center z = 0. The barriers are
defined as Gaussian functions V (z) = V0 exp {−[(z − b)/c]2}
with a width parameter c, and height V0, Fig. 1(b). The
potential barriers are independent on the polar angle ϕ. Their
role is to control the contact strength, if placed at the contacts
between the nanowire and the leads, and/or contribute to the
backscattering of the wave functions.

III. THE COMPUTATIONAL METHOD

In order to calculate the conductance of the open cylinder,
i.e., the CSN in contact with the external leads, we use the
scattering formalism based on the R-matrix method. This
method has been used in similar transport problems in quantum
dots connected to the leads via quantum point contacts [25], in
planar nanotransistors [26,27], or in cylindrical bulk nanowires
with radial constrictions, at zero magnetic field [28–31]. The
approach consists of two parts. In the first part the wave
function of an electron at a given energy E is built, both in
the leads and in the central scattering region (here the CSN),
and matched by continuity conditions at the junctions. In the
second part one obtains the S matrix, the transmission function,
and the conductance.

We assume that in the leads, close to the junctions with the
CSN, the wave function can be written as a combination of
plane waves and orbital states:

ψl(r)=
∑
mσ

[
ψ in

mσle
−ikm(z−zl ) + ψout

mσle
ikm(z−zl )

]
um(ϕ)|σ 〉, (1)

where l = S,D is a label for the two leads, zl = ∓Lz/2
denote the coordinates of the junctions, σ is the spin label,
and um(ϕ) = eimϕ/

√
2π are the eigenvectors of the angular

momentum, with m = 0, ± 1, ± 2, . . .. The wave vector km

corresponds to the longitudinal motion of a particular circular
mode m, being determined by the energy of the incoming
electron:

E = �
2

2meff

(
k2
m + m2

ρ2

)
, km =

√
2Emeff

�2
− m2

ρ2
, (2)

where meff is the effective mass of the material. Note that at a
fixed energy, depending on m, km can be real or imaginary. The
real values describe open channels, propagating from one lead
to another lead, whereas the imaginary values describe closed
(or evanescent) channels which are states bound around the
scattering region [17].

Although we are formally treating the leads as semi-infinite
extensions of the CSN, with the same circular symmetry, in
fact the wave functions (1) are important only at (or close to)
the boundaries zl . Therefore, in principle, the shape of the leads
can be arbitrary. In experimental setups the leads are usually
perpendicular “finger” electrodes attached to the nanowire
sample [18]. Moreover the magnetic field has completely
different effects in the leads and in the measured sample. This
also motivates us to neglect in our model the magnetic field in
the leads. In addition to simplicity, this assumption is helpful
to define the contact between the leads and the CSN not only
as a mathematical boundary but also as a magnetic barrier.
Then, by using the potential barriers well inside the CSN we
can also simulate new boundaries of the scattering area, this
time with a continuous magnetic field.

In order to calculate the wave function in the CSN region
one has to find the eigenstates of the Wigner-Eisenbud (WE)
Hamiltonian H̃ , satisfying Neumann boundary conditions at
the points zl (instead of the Dirichlet conditions familiar for
hard wall boundaries):

H̃χa = εaχa,

where a = 1,2, . . . is a generic quantum number labeling
the WE energies εa in increasing order. The WE eigenstates
χa ≡ |a〉 are expanded in a basis set |q〉 = um(ϕ)un(z)|σ 〉,
with un(z) = An cos[nπ (z/Lz + 1/2)], n = 0,1,2, . . ., and
normalization factor A0 = √

1/Lz and An = √
2/Lz for

n > 0.
The Hamiltonian H̃ is formally built as a regular Hamil-

tonian H , with the kinetic term containing the modified
momentum operator pz + eAz = pz + eBρ sin ϕ, the vector
potential being defined in the Landau gauge A = (0,0,By),
and the Zeeman term depending on the effective g factor of
the material:

H = − �
2

2meffρ2

∂2

∂ϕ2
+ (pz + eBρ sin ϕ)2

2meff
− 1

2
geffμBBσx.
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With Neumann boundary conditions, implemented via the
cosine functions of the basis |q〉, the resulting linear term
in pz is not Hermitian. Therefore the matrix elements of the
WE Hamiltonian are defined as H̃qq ′ = (Hqq ′ + H ∗

q ′q)/2. This
procedure is equivalent to correcting the momentum pz with a
surface Bloch operator L = −i�[δ(z − zD) − δ(z − zS)]/2 as
discussed by other authors [32,33].

The wave function in the CSN can be written as a
superposition of WE eigenstates,

ψ(r,E) =
∑

a

αa(E)χa(r), (3)

and the coefficients αa are determined by the continuity
conditions of the wave functions and their first derivatives
at the zl boundaries. Detailed calculations can be found in
Appendix A of Ref. [26]. By introducing one more composite
label |ν〉 = |mσl〉 the amplitudes of the wave function in the
leads, Eq. (1), can be seen as the vectors ψ in ≡ {ψ in

ν } and
ψout ≡ {ψout

ν }, which are related via the continuity conditions,
as

ψ in + ψout = −iRK(ψ in − ψout). (4)

In Eq. (4) we have introduced two matrices, the matrix of
wave vectors with elements Kνν ′ = kmδνν ′ , and the so-called
R matrix defined as

Rνν ′(E) = − �
2

2meff

∑
a

〈ν|a〉〈ν ′|a〉†
E − εa

. (5)

The notation 〈ν|a〉 stands for the scalar product of the orbital
and spin states incorporated in each factor, at the two frontiers
zl , i.e.,

〈ν|a〉 = 〈σ |
∫ 2π

0
u∗

m(ϕ)χa(ϕ,zl)dϕ.

The scattering problem is solved by calculating the S

matrix, which transforms the “in” states in “out” states,

ψout = Sψ in ,

and using Eq. (4) it is obtained as

S = −(1 − iRK)−1(1 + iRK).

Having the S matrix one can calculate the transmission matrix
between the open channels ν and ν ′

Tνν ′(E) = |(K1/2SK−1/2)νν ′ |2,
and finally the conductance G, by summing all contributions
from separate leads, i.e., |ν〉 = |mσS〉 and |ν ′〉 = |m′σ ′D〉:

G = e2

h

∫
dE

(
− ∂F

∂E

)∑
mσ

mσ ′

TmσS,m′σ ′D(E), (6)

where F denotes the Fermi function.

IV. RESULTS AND DISCUSSION

In the numerical calculations we used material parameters
of InAs, meff = 0.023 and geff = −14.9. The radius of the CSN
was fixed to ρ = 30 nm and length was Lz = 300 or 2000 nm.
The results were convergent in a basis |q〉 truncated to orbital

momenta with |m| � 10 and longitudinal modes n � 130. All
channels, both open and closed, were used to calculate the R

and S matrices. The temperature was fixed to T = 0.5 K.

A. Zero magnetic field

First we show in Fig. 2(a) the conductance at zero magnetic
field as a function of the chemical potential μ for several
heights of the potential barriers. In this case Lz = 300 nm,
and the barriers are situated very close to the contacts, at
b = ±147.5 nm, having a width of c = 2.5 nm. The results are
as expected for ballistic transport in a quantum wire. Without
the barriers (V0 = 0) the conductance has the familiar steps
given by the number of open channels, which is the number
of m values yielding a real wave vector km for the energy
E = μ in Eq. (2), multiplied by the two spin states σ = ±1.
By increasing the height of the barriers the conductance drops,
because the energy of the electronic states within the CSN
increases, and thus a smaller number of open channels remains
available up to the fixed Fermi level. Also the conductance
begins to oscillate, as a result of the (Fabry-Perot) interference
between transmitted and reflected waves, and evolve towards
resonances with peaks indicating the density of states in
the scattering region. This is a consequence of the fact that
the coupling between the scattering region and the leads
decreases.
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FIG. 2. (a) Conductance vs chemical potential μ without mag-
netic field, for contact barriers of height V0 = 0,5, . . . ,30 meV,
and then vs magnetic field perpendicular to the nanowire, with (b)
μ = 3 meV and (c) μ = 5 meV. The nanowire length is Lz = 300 nm
and the barriers are close to the contacts, at b = ±147.5 nm, of width
c = 2.5 nm.
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B. Magnetic barriers with adjustable contacts

Another way to create backscattering of the electrons at
contacts is to consider a magnetic barrier, i.e., a magnetic
field that exists only in the CSN, but not in the leads, as
we assumed in Sec. III. In addition, by adding the potential
barriers we can modify the contact strength. In Fig. 2(b), we
show how the conductance depends on the strengths of the
transverse magnetic field and on the coupling to the leads
for chemical potential 3 meV. We distinguish two regimes,
corresponding to low and high potential barriers, respectively.
For weak potentials, i.e., V0 up to 5 meV, regular conductance
oscillations are obtained, with periods 
B slightly increasing
from 0.20 to 0.22 T in the interval B = 2–4 T. Each of these
oscillations nearly corresponds to a gain of one flux unit
�0 = h/e through the area of the cylinder projected on the
yz plane, A = 2ρLz. According to this estimation the period
should be 
B = �0/A = 0.23 T. Therefore these oscillations
can be considered a kind of AB interference of snaking states
propagating on the lateral sides of the cylinder.

By increasing the height of the potential barriers the AB-like
oscillations smear out and the broader conductance peaks
emerge. These peaks are produced by the same snaking states,
but now as individual resonances occurring in the nearly
isolated CSN, only weakly connected to the leads. This case
was described by Rosdahl et al. by modeling the contacts with
a tunneling parameter [24].

In Fig. 2(c) we show the magnetoconductance with the
chemical potential increased to 5 meV. The contribution of
higher-energy levels results in more complex fluctuations, but
the fine structure of the flux periodic oscillations remains
visible. The resonances at high potential barriers are now
shifted to higher magnetic fields.

C. WE energy spectra and wave functions

We can gain more understanding of the AB oscillations by
looking at the WE energy spectra versus magnetic field shown
in Fig. 3. In the case of strong coupling between the CSN
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FIG. 3. The Wigner-Eisenbud (WE) energies εa (a) without
contact barriers and (b) with barriers of V0 = 20 meV. The blue
dotted horizontal lines show the chemical potentials used in the
magnetoconductance calculations, μ = 3 and 5 meV.

and the leads, e.g., V0 = 0, the low-energy levels form braid
shape patterns for B > 1 T, Fig. 3(a). These oscillations affect
the conductance, Eq. (6), through the denominators of the R
matrix, Eq. (5), which are sensitive to such small changes in
the WE energies εa , and induce the AB oscillations. In fact, the
R matrix has a form similar to the Green’s functions used by
other authors for such scattering-transport calculations [34].
The braids are an indication of snaking states interference in
the open CSN. We verified that such an energy spectrum is
also obtained for a CSN with a finite thickness of 10 nm, by
including in the basis |q〉 radial wave functions vanishing at
the surfaces.

In the presence of high potential barriers the braids shrink
and converge towards nearly double degenerate eigenstates,
Fig. 3(b), as obtained for the isolated cylinder [24]. The
WE spectra can also explain the transition from flux-periodic
magnetoconductance to resonant peaks, observed while the
height of the potential barriers is being increased. These peaks
occur at those magnetic fields for which the snaking states are
crossing the Fermi energy.

Further information on the snaking states can be obtained
from the wave functions. In the scattering region they are
obtained with Eq. (3), using the coefficients αa expressed with
the S matrix [28]:

αa(E) = �
2

2meff

i√
2π

1

E − εa

∑
ν

〈ν|a〉∗km

(
1 −

∑
ν ′

Sνν ′

)
,

where by summing over all labels ν we consider electrons
incoming from both leads, with wave functions of equal
amplitudes. Nevertheless, since the wave functions themselves
are not directly involved in the conductance calculations, we
look at them only to correlate the behavior of the snaking
states in the scattering region with the WE spectrum and the
conductance oscillations.

In Fig. 4 we show two distinct situations, for a fixed
energy E = 3 meV, which is the chemical potential used in
Fig. 2(b), and no potential barrier, V0 = 0. For B = 2.91 T the
pair of snaking states have in-phase longitudinal oscillations,

0.0
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FIG. 4. Probability densities corresponding to the wave functions
within the CSN, at energy E = 3 meV and V0 = 0, for (a) B = 2.91 T
when the snaking states are in phase, and (b) B = 3.02 T when
they are in antiphase. Here we show the open cylindrical surface,
the vertical axis being the polar angle and the horizontal axis the
longitudinal z coordinate.
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FIG. 5. Conductance vs magnetic field for a nanowire of length
Lz = 2000 nm. The upper curve was obtained without potential
barriers (V0 = 0), and the lower curve with two barriers situated
at b = ±150 nm, as indicated in Fig. 1(b), of height V0 = 7
meV, and width parameter c = 20 nm. The chemical potential is
μ = 6.5 meV.

Fig. 4(a), corresponding to a crossing of the braided WE
energies, Fig. 3(a), and to a conductance minimum, Fig. 2(b).
For B = 3.02 T the two snaking states have out-of-phase
longitudinal oscillations, Fig. 4(b). In this case the braids are
maximally open, and the conductance has a maximum. The
out-of-phase structure of the snaking states does not exist in
the isolated CSN, but only the in-phase one [24]. Here, for the
open CSN, by imposing the potential barriers the lateral shift
of the out-of-phase maxima gradually reduces, until they align
like in Fig. 4(a). Seen from this angle the braids of the WE
spectrum and the AB oscillations are related to the relative
phase of the snaking states.

D. Potential barriers on a long wire

In the next example we chose a much longer CSN, of
length Lz = 2000 nm. The magnetic field still vanishes in
the leads, and so there are magnetic barriers at the contacts,
which cause backscattering and hence interference. However,
the corresponding conductance oscillations are now too dense
and too weak to be resolved, because their period is inversely
proportional to the wire length. In the absence of any potential
barrier the computed magnetoconductance has smooth steps
as shown in Fig. 5. The steps reflect the number of propagating
(open) channels associated to the complex sub-band structure
of the energy spectra of an infinite hollow cylinder in transverse
magnetic field [19,20,22,34]. A detailed analysis of these steps
is nevertheless beyond the aim of the present paper.

With potential barriers situated at ±150 nm from the
center of the nanowire we can obtain again the flux periodic
oscillations, comparable to the ones for the nanowire of
300-nm length. The oscillations are now less regular than
before, but with an average period of 0.20–0.22 T within
the interval 0.4–2.4 T. In order to reduce the transparency
of the barriers and to increase the backscattering we used
wider barriers than before, with c = 20 nm. The length of
the scattering zone in between the potential barriers is less
sharply defined than in the case of the pure magnetic barriers,
and so is the real area of the magnetic flux, compared
to the reference cross-section area between the barriers,
A = 4ρb. Nevertheless, regardless of these imperfections, the
oscillations correspond reasonably well with the expected
periodicity 
B = �0/A = 0.23 T.

V. CONCLUSIONS

In conclusion we showed that the existence of the snaking
states in a CSN in a transversal magnetic field can be
experimentally observed as flux periodic oscillations of the
magnetoconductance, with a short CSN strongly coupled to
leads. In this case the snaking states behave like transmitted
and reflected waves which interfere at the contacts with the
leads. In the limit of weak coupling the snaking states can be
seen as individual resonances of the conductance. In our model
the contacts are primarily simulated by matching two different
types of wave functions, in the presence of a magnetic barrier
resulting from neglecting the magnetic field in the leads. In
order to further modify the transmission and reflection at the
contacts we included potential barriers, which reduced the
coupling CSN leads, and thus the amplitude of the transmitted
waves. Another way to observe the flux periodic oscillations
in a transverse magnetic field, although possibly less regular,
may be by creating scattering regions with potential barriers,
as produced by finger gates placed over a long nanowire [18].
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[6] C. Blömers, T. Rieger, P. Zellekens, F. Haas, M. I. Lepsa,
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