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Abstract 

Re-design of a given antenna structure for various substrates is a practically important issue yet non trivial, particularly 

for wideband and ultra-wideband antennas. In this work, a technique for expedited redesign of ultra-wideband 

antennas for various substrates is presented. The proposed approach is based on inverse surrogate modeling with the 

scaling model constructed for several reference designs that are optimized for selected values of the substrate 

permittivity. The surrogate is set up at the level of coarse-discretization EM simulation model of the antenna and, 

subsequently, corrected to provide prediction at the high-fidelity EM model level. The dimensions of the antenna 

scaled to any substrate permittivity within the region of validity of the surrogate are obtained instantly, without any 

additional EM simulation necessary. The proposed approach is demonstrated using an ultra-wideband monopole with 

the permittivity scaling range from 2.2 to 4.5. Numerical validation is supported by physical measurements of the 

fabricated prototypes of the re-designed antennas. 

Keywords: antenna design, geometry scaling, simulation-driven optimization, surrogate modeling, inverse modeling, 

substrate properties. 
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1. Introduction 

 

Electromagnetic (EM) simulation is one of the most important tools in the design 

of contemporary antenna structures. EM analysis is the only way to ensure reliability 

of performance evaluation, especially for compact structures where additional components 

(such as connectors) have to be included into the computational model as they affect the antenna 

operation. Unfortunately, high-fidelity EM simulation at fine discretization of the structure at 

hand is computationally expensive. This becomes a problem for design automation by means 

of numerical optimization. Another issue is a large number of geometry parameters typical for 
modern antennas, which by itself makes simulation-driven design closure a challenging task. 

Methods such as the gradient-based search with numerical derivatives [1] or population-based 
metaheuristics (often used for global optimization [2, 3]) may be prohibitively expensive. A 

possible way of alleviating these difficulties are surrogate-assisted techniques [4, 5] as well as 

the gradient search with adjoint sensitivities [6, 7]. Surrogate-based methods exploit faster 

representations of the antenna structure under design, typically constructed from coarse-

discretization EM simulation models (faster but less accurate), which are appropriately 

corrected to be used as prediction tools for finding better designs [4, 5, 8]. Adjoint sensitivities 

enable to considerable reduce the cost of gradient-based search [9]. However, availability of 

this technology is still limited in commercial software [10, 11]. 
A common problem in antenna engineering is re-design of a given structure for various sets 

of performance requirements (e.g., operating frequencies for narrow-band antennas), but also 

for various substrates. Normally, such a re-design may be just as expensive and challenging as 

obtaining the original design (used as a starting point). Therefore, speeding up a re-design 
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process by re-using one or more existing designs seems to be an attractive alternative. 

Notwithstanding, it is a challenging task: due to complexity of contemporary antennas [12], the 

relationships between geometry parameters [13] and performance figures are normally 

nonlinear and often counter-intuitive (e.g., some of the parameters may increase, whereas others 

decrease when the substrate permittivity is increased). 

In [14], a surrogate-based technique has been proposed for dimension scaling of narrow-

band antennas with respect to the operating frequency. It was utilizing inverse modeling and 

variable-fidelity EM simulations. In this work, we adopt the approach of [14] to scale ultra-
wideband (UWB) antennas with respect to the substrate permittivity. The objective is to directly 

obtain the dimensions of the antenna scaled to any permittivity (within a range of interest) that 

are optimum in the sense of ensuring the minimum in-band reflection level. Here, we also utilize 

the inverse model that is constructed based on four reference designs corresponding to various 

permittivity values distributed along the range of interest and obtained for the coarse-mesh EM 

simulation model. The appropriate correction enables to elevate the surrogate to the high-

fidelity EM simulation model level and to use it for predicting the optimum antenna dimensions 

corresponding to the required value of the substrate permittivity. Our approach is validated 
using a UWB monopole antenna scaled in the relative permittivity range from 2.2 to 4.5. 

Selected designs have been fabricated and measured in order to further confirm the correctness 
of the proposed scaling methodology. 

 

2. Antenna scaling for substrate parameters 

 

In this section, we outline the procedure for low-cost dimension scaling of UWB antennas 

with respect to the substrate properties, specifically, the dielectric permittivity. Our technique 

is comprehensively validated in Section 3 using a compact UWB monopole antenna example. 

 

2.1. Dimension scaling. problem formulation 

 

We denote by x ∈ Rn a vector of antenna geometry parameters. We also denote by Rf(x) the 

response of the high-fidelity EM simulation model of the structure (here, reflection versus 

frequency). Let  xf
*(ε) be the optimized design of the antenna for a substrate of a relative 

permittivity ε. In this work, we consider UWB antennas and thus the optimized design is 

understood as the one that ensures the minimum possible reflection level within the UWB 

frequency range, i.e., from 3.1 GHz to 10.6 GHz. 

The scaling problem is formulated as follows. Given the reference design xf
*(ε0) 

corresponding to a certain relative permittivity value ε0, find xf
*(ε) for given permittivity in the 

range of interest εmin ≤ ε ≤ εmax. The scaling problem is a non-trivial one in general, but it is 
particularly challenging for wideband antennas because the relationships between the optimal 

dimensions and the substrate permittivity cannot be described analytically. 

 

2.2. Inverse model construction 

 

For expedited dimension scaling, we utilize an inverse surrogate model that represents the 

antenna geometry parameters as a function of the substrate permittivity ε. It is constructed using 

several antenna designs corresponding to a few values εj, j = 1,…, N, within the range of interest, 

and obtained at the level of the coarse-discretization electromagnetic antenna model Rc [14]. 

The reference designs are found using local optimization, here, by means of the trust-region-

based [15] gradient search with finite differentiation.  

The surrogate xc(ε) is defined as: 
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where xc.k(ε,pk) is a model of the kth geometry parameter of the antenna with pk being the model 
coefficients. P = [p1  …  pn] is the overall coefficient vector for the model.  

The models xc.k have an explicit analytical form, determined based on visual inspection of 

the training data. Initial experiments indicate that a second-order polynomial is sufficient for 

our purposes. Thus, the surrogate model is:  

xc.k(ε,pk) = pk.1 + pk.2ε + pk.3ε2                                                                            (2) 

and its parameters are pk = [pk.1 pk.2 pk.3]. The model parameters are identified through curve 

fitting as: 

   2

. . .1
arg min ( ( , ) )ε

=
= −∑

p
p p

N

k c k j c j kj
x x .                                          (3) 

It should be emphasized that in order to smoothen out possible irregularities (e.g., due to 

imperfect optimization of the reference designs), the surrogate should be a regressive model 
rather than interpolative one. Therefore, the number of the reference designs should be larger 

than the number of model parameters. Here, because there are three parameters in the model, 
four reference designs are used. 

 

2.3. Dimension prediction of scaled design 

 

The surrogate model is created using low-fidelity model reference designs so that it has to 

be corrected before being used for scaling the antenna dimensions at the high-fidelity model 

level. This is necessary to account for the low- and high-fidelity model discrepancies. Because 

both models are evaluated using the same solver, they are well correlated so that it is sufficient 

to introduce a shift at the level of geometry parameters as described below. The correction 

requires availability of a reference design xf
*(ε0), but also an optimized coarse-discretization 

model xc
*(ε0), which is one of the reference designs considered in Section 2.2. The high-fidelity 

model scaling is then carried out as follows: 
* *

0 0( ) ( , ) ( ) ( )ε ε ε ε = + − x x P x xf c f c .                                             (3) 

The correction xf
*(ε0) – xc

*(ε0) “shifts” the inverse model xc so that the consistency condition 

xf(f0) = xf
*(f0) is satisfied at the reference permittivity ε0.  

 

3. Verification example: UWB monopole antenna 

 

Here, we provide numerical and experimental verification of the technique introduced in 

Section 2. We use a UWB monopole antenna scaled within the permittivity range of 2.2 to 4.5. 

 

3.1. Antenna structure 

 

Consider a UWB monopole antenna shown in Fig. 1. The structure is based on a design of 

[16]. It consists of a rectangular radiator and a ground plane with an L-shaped strip for current 

path enhancement. The vector of design variables is x = [l0 g a l1 l2 w1 o]T. The parameter w0 = 

2o + a, whereas the feeding line width wi is recalculated based on the substrate permittivity to 

ensure 50 ohm input impedance. All dimensions are in mm. The EM antenna models are 

implemented in CST Microwave Studio (Rf : ~4,600,000 mesh cells, simulation time 40 

minutes, and Rc : ~850,000 cells, 2 minutes) [10]. The models include an SMA connector to 

ensure reliability of antenna evaluation (see Fig. 1b). The target scaling range for the substrate 

permittivity is from 2.2 to 4.5. 
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3.2. Inverse model 

 
The inverse surrogate has been prepared using four reference points corresponding to the 

permittivity values: 2.5, 3.0, 4.1, and 4.5. Fig. 2 shows the optimized low-fidelity model 

responses at the reference designs, whereas Fig. 3 shows the extracted inverse model for all 

antenna dimensions. The high-fidelity model reference design is set for a permittivity value of 

ε0 = 3.0 and it is xf
*(ε0) = [4.327 1.298 10.214 14.168 5.166 3.128 3.329]T. The corresponding 

low-fidelity design is xc
*(ε0) = [4.564 1.184 10.087 13.841 5.128 3.261 3.519]T. 

 

3.3. Numerical verification 

 

For the sake of verification, the antenna was scaled to the following substrate permittivity 

values: 2.2, 2.67, 3.2, 3.5, and 4.3. Fig. 4 shows the high-fidelity model response at the designs 

obtained using the proposed scaling procedure, whereas Table 1 shows the values of geometry 

parameters. It can be observed that the simulated antenna performance is excellent in all cases 
with the maximum in-band reflection around or below –15 dB. Note that the first of the 

permittivity values is outside the range of the reference designs (i.e., 2.5 to 4.5). This confirms 

that our inverse model can also be used for extrapolation purposes. 

 
                         a)                                                                              b) 

               

Fig. 1. A UWB monopole antenna: a) the top view with highlighted dimensions; b) 3D visualization. 

 

 

 

Fig. 2. Responses of the optimized coarse-discretization antenna model at the training designs corresponding to:  

ε = 2.5, ε = 3.0, ε = 4.1, and ε = 4.5. 

w1

l2

a2

a1

g
l0

o

w0

GND

wi

l1

2 4 6 8 10 12
-25

-20

-15

-10

-5

0

Frequency [GHz]

|S
1

1| 
[d

B
]

2 4 6 8 10 12
-25

-20

-15

-10

-5

0

Frequency [GHz]

|S
1

1| 
[d

B
]

2 4 6 8 10 12
-25

-20

-15

-10

-5

0

Frequency [GHz]

|S
1

1| [
d

B
]

2 4 6 8 10 12
-25

-20

-15

-10

-5

0

Frequency [GHz]

|S
1

1| [
d

B
]



 

Metrol. Meas. Syst., Vol. 23 (2016), No. 4, pp. 513–520. 

 

 
Fig. 3. Dimensions of the four training UWB monopole designs (at the coarse-discretization EM model level) 

(○) and the extracted inverse surrogate (—). 

 

Table 1. Dimensions of the scaled UWB monopole structure. 

Substrate 
Permittivity 

Geometry Parameter 

l0 g a l1 l2 w1 o 

2.2 3.845 1.279 11.515 15.299 4.882 3.669 3.605 

2.67 4.161 1.302 10.817 14.704 5.145 3.164 3.297 

3.2 4.404 1.304 10.194 14.223 5.185 2.803 3.105 

3.5 4.488 1.294 9.919 14.039 5.087 2.697 3.069 

4.3 4.524 1.227 9.458 13.862 4.399 2.762 3.231 

 

 

3.4. Experimental validation 

 

Two of the scaled antennas, especially those re-designed for permittivity values of 2.2 and 

3.5 have been fabricated on two different dielectric substrates manufactured by Taconic: TLP-

5 (εr = 2.2, tanδ = 0.0009; h = 0.78 mm) and RF−35 (εr = 3.5, tanδ = 0.0018; h = 0.76 mm). 

Photographs of the manufactured structures are shown in Fig. 5. 

A comparison of the simulated and measured reflection responses of the structure scaled for 

the TLP-5 substrate is shown in Fig. 6. The obtained results are in good agreement. It should 

be noted that the maximum simulated and measured in-band reflection levels are –15.8 dB and 

–13.5 dB, respectively. Thus, the peak difference between responses is 2.3 dB. At the same 

time the measured |S11| antenna bandwidth (determined at the –10 dB level) is 1.2 GHz broader 
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than the simulated one. Also, it should be mentioned that the electromagnetic model of the 

antenna was optimized using a substrate with a varied permittivity, yet the loss tangent and 

thickness were set to 0.0018 and 0.76 mm, respectively. At the same time, these quantities are 

different for the TLP-5 substrate which is the reason of visible discrepancies between the 

simulated and measured responses. We would like to reiterate that the structure dimensions for 

TLP-5 substrate have been obtained by extrapolation of the inverse model parameters, and − 

from this perspective − the obtained results should be considered as very good. 

 
                          a)                                                             b) 

 
 

                             c)                                                          d)                                                       

 
 

Fig. 4. Responses of the UWB monopole designs scaled to the substrate permittivities:  

a) εr = 2.2; b) εr = 2.67; c) εr = 3.2; d) εr = 3.5; and e) εr = 4.3. 

 

 
                            a)                                                                         b) 

                                                  

Fig. 5. Photographs of the fabricated UWB monopole antennas: a) εr = 2.2 (TLP-5); and b) εr = 3.5 (RF-35). 
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Fig. 6. Comparison of the simulated (– –) and measured (––) reflection responses of the antenna structure scaled  

to a permittivity of 2.2. 

 

 

Fig. 7. Comparison of the simulated (– –) and measured (––) reflection responses of the antenna structure scaled  

to a permittivity of 3.5. 

 

Figure 7 shows a comparison of the reflection responses obtained for the antenna fabricated 

on the RF-35 substrate. The results are in noticeably better agreement than those obtained for 

the TLP-5 one. The in-band peak difference between the simulated and measured |S11| responses 
is only 0.2 dB. On the other hand, the measured antenna bandwidth is 600 MHz broader than 

the simulated one.   

It should be emphasized that both structures are electrically small since their dimensions are 

only 23.85 × 18.72 = 446 mm2 and 21.02 × 15.06 = 340 mm2 for the antenna designed on TLP-

5 and RF-35, respectively. The enhanced measured bandwidth is a result of an electrically large 

measurement setup (cables, fixtures, etc.) which affects the antenna’s operation. 
 

4. Conclusion 

 

In this work, low-cost dimension scaling of UWB antennas with respect to the substrate 
permittivity has been examined. Our approach exploits the inverse surrogate model constructed 

from the reference designs obtained for the coarse-discretization EM model of the antenna of 
interest, and further corrected using a single reference design at the high-fidelity model level. 

Once set up, the surrogate permits direct generation of the optimum dimensions of the antenna 

re-designed for any required value of the substrate permittivity at a negligible computational 

cost. The proposed procedure has been positively verified using a UWB monopole antenna 

example for the permittivity range of 2.2 to 4.5. The simulation results have been validated 

experimentally. 
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